
B

R

R
h

AQ1

D

h

a

A
R
R
A
A

K
P
5
H
P
V

1

o
s
f
s
c
t
t
t
m
b
g
N

9

h
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
ARTICLE IN PRESSG Model
BR 9035 1–22

Behavioural Brain Research xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Behavioural  Brain  Research

jou rn al hom epage: www.elsev ier .com/ locate /bbr

esearch  report

ecent  advances  in  the  neuropsychopharmacology  of  serotonergic
allucinogens

dam  L.  Halberstadt ∗

epartment of Psychiatry, University of California San Diego, La Jolla, CA, United States

 i  g  h  l  i  g  h  t  s

• Serotonergic  hallucinogens  are  classified  as phenylalkylamines  and  indoleamines.
• The  two  classes  of hallucinogens  produce  similar  subjective  effects  in humans  and  show  cross-tolerance.
• Hallucinogen  effects  are  primarily  mediated  by  the  serotonin  5-HT2A  receptor.
• Many  effects  of  hallucinogens  are  mediated  in  the  prefrontal  cortex.
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a  b  s  t  r  a  c  t

Serotonergic  hallucinogens,  such  as (+)-lysergic  acid  diethylamide,  psilocybin,  and  mescaline,  are  some-
what enigmatic  substances.  Although  these  drugs  are  derived  from  multiple  chemical  families,  they all
produce  remarkably  similar  effects  in animals  and humans,  and  they  show  cross-tolerance.  This  article
reviews  the  evidence  demonstrating  the  serotonin  5-HT2A receptor  is  the  primary  site of  hallucinogen
action.  The  5-HT2A receptor  is  responsible  for mediating  the  effects  of  hallucinogens  in human  subjects,
eywords:
sychedelic
-HT2A receptor
ead twitch
refrontal cortex
isual effects

as  well  as  in animal  behavioral  paradigms  such  as  drug  discrimination,  head  twitch  response,  prepulse
inhibition  of  startle,  exploratory  behavior,  and  interval  timing.  Many  recent  clinical  trials  have  yielded
important  new  findings  regarding  the  psychopharmacology  of  these  substances.  Furthermore,  the  use
of  modern  imaging  and  electrophysiological  techniques  is  beginning  to help  unravel  how  hallucinogens
work  in  the  brain.  Evidence  is also  emerging  that hallucinogens  may  possess  therapeutic  efficacy.

© 2014  Published  by  Elsevier  B.V.
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. Introduction

Hallucinogenic drugs have been used by humans for thousands
f years, but western scientists only became interested in these
ubstances beginning in the late 1800s. These agents produce pro-
ound changes in consciousness. Because other drug classes can
ometimes produce effects that overlap with those of the hallu-
inogens, it has been important to develop a formal definition for
hese compounds. This has turned out to be a difficult and con-
entious task. Hallucinogens have been defined as agents that alter
hought, perception, and mood without producing memory impair-

ent, delirium, or addiction [1,2]. However, this definition is overly
Please cite this article in press as: Halberstadt AL. Recent advances i
Behav Brain Res (2014), http://dx.doi.org/10.1016/j.bbr.2014.07.016

road because it fails to exclude a wide-range of agents that are
enerally not classified as hallucinogens, such as cannabinoids and
MDA antagonists. It is now recognized that hallucinogens produce
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similar discriminative stimulus effects [3] and act as agonists of the
serotonin-2A (5-HT2A) receptor [4]. Therefore, it has been proposed
[5] that in addition to having the characteristics listed above, hal-
lucinogens should also bind to the 5-HT2A receptor and produce
full substitution in animals trained to discriminate the prototyp-
ical hallucinogen 2,5-dimethoxy-4-methylamphetamine (DOM).
For this reason, hallucinogens are often categorized as classical hal-
lucinogens or serotonergic hallucinogens. This article will review
the pharmacology of hallucinogens, including their mechanism-of-
action, their effects in animals and humans, and recent findings
regarding how they interact with specific brain regions.

2. Pharmacology of hallucinogens

2.1. Receptor interactions
n the neuropsychopharmacology of serotonergic hallucinogens.

Classical hallucinogens can be divided into two main struc-
tural classes: indoleamines and phenylalkylamines [6]. Indoleamines
include the tetracyclic ergoline (+)-lysergic acid diethylamide (LSD)
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Fig. 1. Chemical structures of indolealkylami

nd the chemically simpler indolealkylamines, which includes
,N-dimethyltryptamine (DMT), N,N-dipropyltryptamine (DPT),
-methoxy-DMT (5-MeO-DMT), and psilocybin (4-phosphoryloxy-
MT) and its active O-dephosphorylated metabolite psilocin

4-hydroxy-DMT). DMT  is found in several hallucinogenic snuffs
sed in the Caribbean and in South America. It is also a com-
onent of ayahuasca,  an infusion or decoction prepared from
MT-containing plants in combination with species of Banisteriop-

is containing �-carboline alkaloids that act as monoamine oxidase
nhibitors [7]. Psilocybin and its metabolite psilocin are the active
omponents of hallucinogenic teonanácatl mushrooms belonging
o the genus Psilocybe.

The phenylalkylamines can be subdivided into phenethy-
amines, such as mescaline from the peyote cactus (Lophophora
illiamsii), 2,5-dimethoxy-4-bromophenethylamine (2C-
), and 2,5-dimethoxy-4-iodophenethylamine (2C-I); and
henylisopropylamines (“amphetamines”), including DOM,
,5-dimethoxy-4-iodoamphetamine (DOI), and 2,5-dimethoxy-
-bromoamphetamine (DOB). Although N-alkyl substituted
henylalkylamines are usually inactive as hallucinogens, the
ddition of a N-benzyl group to phenethylamines can dramat-
Please cite this article in press as: Halberstadt AL. Recent advances i
Behav Brain Res (2014), http://dx.doi.org/10.1016/j.bbr.2014.07.016

cally increase their activity, and N-benzylphenethylamines
re a new class of potent hallucinogenic compounds [8].
xamples of N-benzylphenethylamine hallucinogens include
-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine
enylalkylamine, and ergoline hallucinogens.

(25I-NBOMe) and N-(2-methoxybenzyl)-2,5-dimethoxy-4-
bromophenethylamine (25B-NBOMe). The chemical structures
of many of these hallucinogens are illustrated in Fig. 1.
Nichols and colleagues have also developed conformationally
restricted derivatives of phenylalkylamine hallucinogens: bromo-
DragonFLY (1-(8-bromobenzo[1,2-b;4,5-b]difuran-4-yl)-2-amino-
propane; [9]); TCB-2 (4-bromo-3,6-dimethoxybenzocyclobuten-
1-yl)methylamine; [10]; and 2S,6S-DMBMPP ((2S,6S)-2-(2,5-
dimethoxy-4-bromobenzyl)-6-(2-methoxyphenyl)piperidine;
[11]). Likewise, lysergic acid 2,4-dimethylazetidide was developed
as a rigid analog of LSD that shows similar in vivo potency [12].
Fig. 2 shows examples of rigid hallucinogen analogs.

Phenylalkylamine hallucinogens are selective for 5-HT2 recep-
tors, including 5-HT2A, 5-HT2B, and 5-HT2C sites [13–15]. The
indolealkylamines, by contrast, bind non-selectively to 5-HT recep-
tors. Certain indolealkylamines, most notably DMT  and some
of its derivatives, bind to �1 receptors [16] and the trace
amine receptor [17], and are substrates for the 5-HT trans-
porter (SERT) [18,19]. However, compared with �1 and SERT,
tryptamines are more potent at 5-HT1A and 5-HT2A receptors
by several orders of magnitude, so the former sites probably
n the neuropsychopharmacology of serotonergic hallucinogens.

do not contribute to the hallucinogenic response. LSD and other
ergoline hallucinogens display high affinity for 5-HT receptors,
as well as dopaminergic and adrenergic receptors (reviewed by:
[6,20]).
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Fig. 2. Chemical structures of conformationally restricted hallucinogens.

.2. Pharmacology of the 5-HT2A receptor

The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT,
ee Fig. 3) has potent contractile effects upon smooth muscle, espe-
ially rat uterus and guinea pig ileum. The first indication that there
re multiple 5-HT receptor subtypes came from studies conducted
y Gaddum and Picarelli [21]. They reported that treatment with
ither dibenzyline or morphine alone could only partially block
he effect of 5-HT on guinea pig ileum. However, in tissue exposed
o dibenzyline for 30 min, morphine markedly antagonized 5-HT-
nduced contraction, and dibenzyline acted as a full 5-HT antagonist
n tissue previously exposed to morphine. These findings demon-
trated that 5-HT was acting through two different receptor classes
type D and type M)  to induce contraction of guinea pig ileum.

Soon after the development of radioreceptor techniques to
emonstrate receptor binding, this methodology was applied to
he investigation of 5-HT receptors. The first radioligands utilized
ere [3H]LSD and [3H]5-HT [22,23]. Both of those radioligands

ind to rat brain membranes with high-affinity in a reversible,
aturable, and stereoselective manner, suggesting they are inter-
cting with specific recognition sites. After introduction of the
opamine antagonist radioligand [3H]spiperone, it was recog-
ized that [3H]spiperone binds to 5-HT receptors distinct from
he sites labeled by [3H]5-HT [24]. The sites labeled by [3H]5-HT
nd [3H]spiperone were designated as 5-HT1 and 5-HT2 receptors,
espectively, and it was recognized that [3H]LSD labeled both sites.
he D receptor was eventually shown to be equivalent to the 5-
T2 receptor, whereas the M receptor is pharmacologically distinct
Please cite this article in press as: Halberstadt AL. Recent advances i
Behav Brain Res (2014), http://dx.doi.org/10.1016/j.bbr.2014.07.016

rom 5-HT1 sites and was later classified by Bradley and coworkers
25] as the 5-HT3 receptor. The 5-HT2 receptor class was later reor-
anized to include three subtypes: 5-HT2A (equivalent to the site
nown historically as the 5-HT2 receptor or the D receptor), 5-HT2B

Fig. 3. Structure of serotonin.
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(formerly known as the 5-HT2F receptor), and 5-HT2C (formerly
known as the 5-HT1C receptor) [26].

The 5-HT2A receptor couples to Gq and activates phospholi-
pase C� (PLC�) signaling, resulting in the hydrolysis of membrane
phospholipids to inositol triphosphate (IP3) and diacylglycerol,
and mobilization of intracellular Ca2+ (see Fig. 4). There is evi-
dence that 5-HT2A is coupled to several non-canonical signaling
pathways, including �-arrestin-2, Src (potentially involving Gi/o-
associated G�� subunits), extracellular-regulated kinase (ERK),
p38 mitogen-activated protein (MAP) kinase, phospholipase A2
(downstream from ERK 1,2 and p38 MAP  kinase), Akt, and phos-
pholipase D (dependent on the small G protein ADP-ribosylation
factor-1 (ARF1)) [27–30]. However, the signaling pathways respon-
sible for mediating the characteristic effects of hallucinogens have
not been conclusively identified. Activation of the canonical Gq-
PLC� signaling pathway is apparently not sufficient to produce
hallucinogen-like behavioral effects in animal models [28,31,32].
Multiple signaling pathways may  be involved because the behav-
ioral response to DOI is partially blunted in Gq knockout mice
[33]. Schmid and colleagues have reported that �-arrestin-2 is not
required for the behavioral effects of DOI and 5-MeO-DMT [29,34].
There also does not appear to be a direct relationship between
phospholipase A2 activation and generation of hallucinogen effects
[32].

3. Evidence that serotonergic hallucinogens belong to a
unitary class

3.1. Subjective effects

Despite having different chemical structures, phenylalkylamine,
tryptamine, and ergoline hallucinogens produce remarkably simi-
lar subjective effects [35–42]. It is very difficult for hallucinogen-
experienced subjects to distinguish between psilocybin and LSD if
those substances are administered in a blinded fashion, with the
only apparent difference being the duration of action [41]. Similar
findings have been reported when mescaline, LSD, and psilocy-
bin are compared in the same subjects [37–39]. By contrast, the
effects of hallucinogens can be distinguished from those of other
drug classes. The effects of classical hallucinogens and anticholin-
ergic agents are qualitatively distinct [43,44]. Studies using the
Addiction Research Center Inventory (ARCI) instrument [45] have
confirmed that the effects of LSD are dissimilar from those of (+)-
amphetamine [46] and �9-tetrahydrocannabinol [47]. The ARCI
can also distinguish between the subjective responses to 20 mg
(+)-amphetamine and an ayahuasca preparation containing the
equivalent of a 1 mg/kg dose of DMT  [48]. Although it does not
appear that any studies have directly compared the experiences
produced by classical hallucinogens and the �-opioid receptor ago-
nist salvinorin A from Salvia divinorum,  there is evidence that the
phenomenology of salvinorin A is unique [49], and the ARCI is rel-
atively insensitive to the effects of salvinorin A [50].

Several recent studies have compared the effects of hallu-
cinogens and other drug classes using psychometrically validated
instruments. One instrument that has been widely used to assess
the subjective response to hallucinogens is the Altered States of
Consciousness Questionnaire (APZ), as well as well as APZ vari-
ants such as the APZ-OAV and the 5D-ASC. These rating scales
are designed to assess altered states of consciousness indepen-
dent of their etiology [51,52]. The APZ and APZ-OAV include three
core dimensions: Oceanic Boundlessness (OB), Anxious Ego Dissolu-
n the neuropsychopharmacology of serotonergic hallucinogens.

tion (AED) and Visionary Restructuralization (VR). The OB dimension
reflects a pleasant state of depersonalization and derealization, the
AED dimension measures dysphoric effects such as ego disintegra-
tion, delusions, loss of self-control, thought disorder, and anxiety,
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Fig. 4. Signaling pathways coupled to the 5-HT2A receptor. Abbreviations: AA, arachidonic acid; 2-AG, 2-arachidonoylglycerol; ARF, ADP-ribosylation factor-1; DAG, diacyl-
glycerol; DGL, diacylglycerol lipase; ERK1/2, extracellular-regulated kinases 1 and 2; GRB, growth factor receptor-bound protein 2; IP3, inositol triphosphate; p38 MAPK,
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38  mitogen-activated protein kinase; MEK1/2, mitogen/extracellular signal-regula
inase  kinase; PA, phosphatidic acid; PC, phosphatidyl choline; PIP2, phosphatidylin
LC�,  phospholipase C�; PLD, phospholipase D; SHC, Src homology 2 domain conta

nd the VR dimension involves elementary and complex visual
allucinations and perceptual illusions (see Table 1). Mescaline,
silocybin, and DMT produce profound increases in OB, AED and
R scores [52–56]. Another instrument is the Hallucinogen Rat-

ng Scale (HRS), which was specifically designed to measure the
ffects of parenteral DMT  [57] Double-blind studies have confirmed
he APZ and the HRS can distinguish the effects of psilocybin and

escaline from those of (+)-methamphetamine, methylphenidate,
nd 3,4-methylenedioxyethylamphetamine [53,55,58]. Ayahuasca
lso elicited significantly greater effects than (+)-amphetamine on

 of 6 subscales of the HRS [48].
A double-blind crossover study comparing DMT  and the NMDA

ntagonist (S)-ketamine found DMT  produces effects that more
losely resemble the positive symptoms of schizophrenia, whereas
he effects of (S)-ketamine are more similar to the negative and
atatonic symptoms of schizophrenia [59]. Subjects experienced
ivid visual hallucinations after treatment with DMT  but not with
Please cite this article in press as: Halberstadt AL. Recent advances i
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S)-ketamine; this difference was reflected by scores in the VR
imension of the APZ-OAV, which was more strongly affected by
MT than by (S)-ketamine. Another notable difference between

able 1
ore dimensions of the APZ [52].

Dimension Symptoms assessed

Oceanic Boundlessness (OB) Positive derealization
Positive depersonalization
Altered sense of time
Positive mood
Mania-like experience

Anxious Ego Dissolution (AED) Anxious derealization
Thought disorder
Delusion
Fear of loss of control

Visionary Restructuralization (VR) Elementary hallucinations
Visual pseudohallucinations
Synesthesia
Changed meaning of percepts
Facilitated recollection
Facilitated imagination
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253
nases 1 and 2; MKK3/6, MAPK kinases 3and 6; MKK4, MAPK kinase 4; MEKK, MAPK
l 4,5-biphosphate; PKC, protein kinase C; PKN, protein kinase N; PL, phospholipids;
transforming factor; SOS, son of sevenless homolog.

ketamine and serotonergic hallucinogens is that ketamine does not
produce mystical experiences [60], whereas hallucinogens induce
these states with some reliability [58,61–64].

Vollenweider and colleagues have conducted a psycho-
metric assessment of APZ-OAV data pooled from 43 studies
with psilocybin, (S)-ketamine, and the entactogen 3,4-
methylenedioxymethamphetamine (MDMA, “Ecstasy”) [65].
Examination of the factorial structure of the APZ-OAV revealed the
OB, AED and VR scales are multidimensional, and Vollenweider
et al. were able to extract 11 new homogenous APZ-OAV scales
that are very effective at differentiating the subjective effects of
psilocybin, (S)-ketamine, and MDMA.  There are clear differences
in the relative magnitude of drug effects on several of the new
scales; for example MDMA  has strong effects on blissful state,
(S)-ketamine produces the largest increase in disembodiment,
and complex imagery and elementary imagery are most strongly
influenced by psilocybin Fig. 5 compares the effects of psilocybin
and placebo on the new homogeneous APZ-OAV subscales. In
summary, even though there are some similarities between the
subjective effects of serotonergic hallucinogens, NMDA antago-
nists, psychostimulants, and entactogens, the effects produced by
the latter three drug classes are clearly distinct from those elicited
by classical hallucinogenic drugs.

3.2. Tolerance and cross-tolerance

Tachyphylaxis (tolerance) develops rapidly to the effects of
classical hallucinogens. If LSD and DOM are administered repeat-
edly at daily intervals tolerance is observed after 1–3 days and
there is eventually nearly a complete loss of response [66–69].
Tolerance occurs with a variety of phenylalkylamine, indolealky-
lamine, and ergoline hallucinogens, and compounds from these
classes exhibit symmetrical cross-tolerance [37,41,42,68,70–72].
Importantly, cross-tolerance does not occur between LSD and
n the neuropsychopharmacology of serotonergic hallucinogens.

(1) (+)-amphetamine [46], (2) the anticholinergic N-methyl-3-
piperidyl benzilate [73], or (3) �9-tetrahydrocannabinol [47].
Similar findings have been reported by parallel studies in laboratory
animals [74–79]. The fact that serotonergic hallucinogens produce
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Fig. 5. Subjective effects of psilocybin as measured by the 5-Dimension Altered
States of Consciousness instrument (5D-ASC). The values reported by Grob et al.
[56] were re-analyzed using the 11 new homogenous APZ subscales developed by
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is sufficient to produce hallucinogen-like stimulus effects. Further-
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tuderus et al. [65]. Values are the mean (SEM) percentages of the total possible
core. The placebo was niacin.

imilar experiences and induce cross-tolerance indicates that these
ompounds share a common mechanism of action.

. Involvement of the 5-HT2A receptor in hallucinogen
ffects

.1. Evidence from human studies

Multiple, converging lines of evidence point to 5-HT2A recep-
or activation as the unitary mechanism responsible for mediating
allucinogenesis. Indoleamine and phenylalkylamine hallucino-
ens bind to 5-HT2 sites with moderate to high affinity [80–83].
lthough indoleamine hallucinogens show relatively promiscu-
us binding profiles, phenylisopropylamine hallucinogens such as
OM and DOB are highly selective for 5-HT2 receptors [13,15] and

herefore it is likely that their effects are mediated by a member
f the 5-HT2 family. Additionally, there is a very strong correla-
ion (r = 0.90–0.97) between 5-HT2A receptor affinity and human
allucinogenic potency [13,82,84]. Another compelling finding is
hat 5-HT2A receptor blockade ameliorates most of the effects of
silocybin in human subjects. A series of studies conducted by
ranz Vollenweider and colleagues at the University Hospital of
sychiatry in Zürich have shown that the effects of psilocybin
215–260 �g/kg, p.o.) on the OB, AED, and VR dimensions of the
PZ-OAV and 5D-ASC are completely blocked by pretreatment with
ither the 5-HT2A/2C antagonist ketanserin or the mixed 5-HT2A/D2
ntagonist risperidone [85–90]. By contrast, pretreatment with the
opamine D2 antagonist haloperidol had no effect on psilocybin-

nduced VR scores and actually intensified the effect of psilocybin
n scores in the AED dimension [85]. Ketanserin also blocks the
ffects of psilocybin on a variety of neurophysiological measures in
umans, including tests of spatial working memory [85], prepulse

nhibition of acoustic startle [90], N170 visual-evoked potentials
89], semantic interference in the Stroop test [90], and recogni-
Please cite this article in press as: Halberstadt AL. Recent advances i
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ion of emotional facial cues in a go/nogo task [88]. Furthermore, a
ositron emission tomography (PET) study with the 5-HT2A radio-
racer [18F]altanserin has shown that the intensity of the response
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to psilocybin is directly correlated with the level of 5-HT2A occupa-
tion [91].

4.2. Evidence from animal behavioral models

Because of regulatory constraints on human studies, animal
behavioral models are the primary methodology used to study
hallucinogens in vivo. Although it has been difficult to develop
appropriate models of hallucinogenic activity because of the vari-
ability and complexity of their effects, several animal models
have made important contributions to our understanding of hal-
lucinogen pharmacology. Importantly, although there are some
exceptions, almost all the behavioral effects of hallucinogens stud-
ies in laboratory animals are mediated by the 5-HT2A receptor.

4.2.1. Drug discrimination
Laboratory animals can be trained to discriminate hallucino-

gens from saline using operant conditioning techniques. Rats are
the species most commonly employed, although mice and mon-
keys have also been used. Many classical hallucinogens have been
used as training drugs, including LSD, mescaline, DOM, DOB, DOI,
psilocybin, 5-MeO-DMT, DMT, and DPT [3,92–102]. All of these
hallucinogens produce cross-generalization, suggesting that they
evoke similar interoceptive stimulus cues. By contrast, drugs from
other pharmacological classes do not produce hallucinogen-like
stimulus effects [3,101,103]. There is a great deal of evidence that
the discriminative stimulus effects of hallucinogens are mediated
by the 5-HT2A receptor. For example, Glennon and colleagues con-
ducted substitution tests with 22 hallucinogens in rats trained to
discriminate 1 mg/kg DOM from saline and found that the ED50
values for stimulus generalization are highly correlated (r = 0.938)
with 5-HT2A binding affinity [84]. Another study with 18 hallu-
cinogens found a strong correlation (r = 0.90) between ED50 values
for stimulus generalization to 1 mg/kg DOM  and affinity at 5-
HT2A receptors labeled with [3H]DOB [13]. The stimulus effects
of hallucinogens can be blocked by the selective 5-HT2 antag-
onists ketanserin and pirenperone [4,96,104–106]. Blockade by
ketanserin and pirenperone, however, does not eliminate the pos-
sibility of 5-HT2C receptor involvement because those antagonists
are relatively nonselective for 5-HT2A versus 5-HT2C sites. Impor-
tantly, M100907, a 5-HT2A antagonist with high selectivity versus
the 5-HT2C receptor, blocks stimulus control in animals trained
with DOI [97,107–109], DOM [101,110], R-(−)-DOM [111], LSD
[98,112–114], and psilocybin [99]. Conversely, neither the selective
5-HT2C antagonist SB 242,084 nor the mixed 5-HT2C/2B antagonists
SB 200,646A and SB 206,553 block stimulus control induced by DOI,
LSD, or psilocybin [99,107–109,114]. Furthermore, Fiorella et al.
[115] tested eleven 5-HT2 antagonists and found the rank order
of potencies for blocking R-(−)-DOM substitution in LSD-trained
rats parallels their affinities for 5-HT2A (r = 0.95) but not for 5-HT2C
(r = -0.29).

Although most phenalkylamines are relatively nonselective for
5-HT2A versus 5-HT2C, 2S,6S-DMBMPP displays 124-fold selectiv-
ity for 5-HT2A receptors [11]. Although racemic trans-DMBMPP
is less selective, it still shows 98-fold higher affinity for 5-
HT2A over 5-HT2C receptors. Importantly, trans-DMBMPP fully
substitutes in rats trained to discriminate 0.08 mg/kg LSD. By
contrast, several studies have demonstrated that 5-HT2C ago-
nists fail to mimic the hallucinogen discriminative stimulus.
Neither 1-(3-trifluoromethylphenyl)piperazine (TFMPP) nor m-
chlorophenylpiperazine (mCPP) substitute for DOM,  DOI, or LSD
[103,116,117]. These findings demonstrate that 5-HT2A activation
n the neuropsychopharmacology of serotonergic hallucinogens.

more, 5-HT2C activation does not play a role in mediating the
hallucinogen discriminative stimulus cue. The available data pro-
vide strong support for the conclusion that hallucinogens evoke a
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movements occurring at 78–98 Hz (i.e., each head movement lasts
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Fig. 6. Chemical structure of lisuride.

niform discriminative stimulus cue that is mediated by the 5-HT2A
eceptor.

Although it is clear that the 5-HT2A receptor is primarily
esponsible for generating hallucinogen-induced stimulus control,
nteractions with other receptors may  contribute to or mod-
fy the stimulus effects of hallucinogens. This appears to be
specially true for indoleamines, which are much less selec-
ive than phenylalkylamines for 5-HT2A sites. For example, there
ppears to be a time-dependent dopaminergic component to the
SD discriminative stimulus in rats [118,119]. There is evidence
hat the 5-HT1A receptor also contributes to the discriminative
timulus effects of LSD. 5-HT1A agonists such as 8-hydroxy-2-(di-n-
ropylamino)tetralin (8-OH-DPAT) and ipaspirone produce partial
ubstitution in rats and mice trained with LSD [98,120–122]. The
-HT1A antagonist WAY-100635 does not alter LSD discrimina-
ion in rats [114,122,123], but the 5-HT1A receptor may  make an

ore prominent contribution to the LSD cue in mice because dis-
rimination can be partially blocked by administration of either

AY-100635 or M100907 [98]. However, the ability of R-(−)-DOB
o substitute for LSD in mice is completely blocked by M100907 but
ot by WAY-100635, demonstrating the stimulus element gener-
ted by 5-HT1A is a non-essential component of the LSD cue and
ot a shared aspect of hallucinogen pharmacology. Although cer-
ain indolealkylamines produce compound stimulus cues involving
oth 5-HT1A- and 5-HT2A-mediated components [100,124,125], 5-
T1A receptors do not play a role in the interoceptive effects of
silocybin [99] or 5-methoxy-N,N-diisopropyltryptamine [126].

A potential confound associated with drug discrimination stud-
es is the possibility of “false positive” results. False-positives occur

here an animal trained to discriminate a hallucinogen general-
zes to a drug that is known to be non-hallucinogenic in humans.
isuride is one example of drug that can produce false-positive
esults. Lisuride is an isolysergic acid derivative that is struc-
urally similar to LSD (see Fig. 6), and acts as an agonist at a
ariety of serotonergic, dopaminergic, and adrenergic receptors
12,14,127–130]. Despite the fact that lisuride has high affinity
or the 5-HT2A receptor and acts as an agonist [32,128,131], it is
ot hallucinogenic in humans [132–135] and has been used clini-
ally to treat migraine and Parkinson’s disease. Some studies have
ound that lisuride produces full substitution in rats trained with
ither LSD, DOI, or DOM [136–139], but in other studies it pro-
uced only partial substitution [129,140]. Although clearly some
egree of similarity exists between the stimulus cues evoked by

isuride and classical hallucinogens, there are also subtle differ-
nces because rats can be trained to discriminate between lisuride
nd LSD using three-choice (drug–drug–vehicle) discrimination
rocedures [141]. Discrimination studies where animals are trained
Please cite this article in press as: Halberstadt AL. Recent advances i
Behav Brain Res (2014), http://dx.doi.org/10.1016/j.bbr.2014.07.016

o discriminate between LSD and another drug such as pentobar-
ital or cocaine also appear to be less sensitive to lisuride-induced
alse-positive responses [139].
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González-Maeso et al. [28] have proposed that the behavioral
differences between LSD and lisuride are due to 5-HT2A functional
selectivity. They found LSD and lisuride both activate Gq/11 signal-
ing via the 5-HT2A receptor, but only LSD increases the cortical
expression of the immediate early genes egr-1 and egr-2 by acti-
vating Gi/o and Src [28]. Therefore, they hypothesized that LSD is
hallucinogenic because it is capable of activating specific signaling
mechanisms that are not recruited by lisuride. Alternatively, the
reason why lisuride fails to recruit Gi/o may  have nothing to do with
functional selectivity, and could be a consequence of its low intrin-
sic efficacy at 5-HT2A [31,32,131]. Although animals trained with
DOM will generalize to lisuride [137,138], the response to DOM is
attenuated when it is co-administered with lisuride [142]. The fact
that lisuride induces a response when administered alone but act as
an antagonist in the presence of a full agonist (DOM) is consistent
with the behavior of a partial agonist.

4.2.2. Head twitch response
Many mammalian species display a paroxysmal rotational

shaking of the head in response to mechanical or chemical irri-
tation of the pinna. Mice show a similar behavior, known as the
head twitch response (HTR), after administration of hallucinogens
([143];[144,145]). Hallucinogens also induce head twitches in rats,
but in that species the behavior often involves both the head and
the trunk [146,147]. The responses made by rats are sometimes
called wet-dog shakes because they resemble the behavior of a dog
drying itself after emerging from the water. It is important to rec-
ognize that the HTR can occur in response to administration of
5-HT precursors (e.g., l-tryptophan and l-5-hydroxytryptophan)
and drugs that increase 5-HT release (e.g., fenfluramine and p-
chloroamphetamine), and therefore the behavior is not specific to
hallucinogens [148–151]. Nonetheless, the HTR has gained promi-
nence as a behavioral proxy in rodents for human hallucinogen
effects because the HTR is one of only a few behaviors that can
reliably distinguish hallucinogenic and non-hallucinogenic 5-HT2A
agonists [28]. Indeed, even high doses of lisuride fail to induce the
HTR in mice [28,152].

It is well-established that phenylisopropylamine and
indoleamine hallucinogens induce the HTR (reviewed by: [20]),
but the literature is less clear with regard to phenethylamine
hallucinogens. Many studies have demonstrated that mescaline
produces head twitch behavior in rats and mice [144,146,153].
It has also been reported that the hallucinogen 2,5-dimethoxy-
4-n-propylthiophenethylamine (2C-T-7) induces the HTR  in
mice [154]. Studies in rats, however, have shown 2C-I, 2C-B,
and 2,5-dimethoxy-4-methylphenethylamine (2C-D) do not
induce the HTR [155]. In contrast to those findings, we recently
reported 2C-I and the N-benzyl derivatives 25I-NBOMe and N-(2,3-
methylenedioxybenzyl)-2,5-dimethoxy-4-iodophenethylamine
(25I-NBMD) produce dose-dependent increases in HTR behavior
in C57BL/6J mice [156]. 25B-NBOMe also induces the HTR in
mice [157]. The discrepant findings with regard to 2C-I and other
phenethylamines may  reflect the fact that mice are more sensitive
than rats to the HTR induced by 5-HT2A partial agonists. 2C-I has
relatively low intrinsic activity at the 5-HT2A receptor [155,158],
and it may  not have sufficient efficacy to provoke head twitches
in rats. Nevertheless, we  are not aware of any serotonergic
hallucinogens that do not produce the HTR in mice.

The kinematics of the HTR induced by DOI have been charac-
terized in C57BL/6J mice and Sprague-Dawley rats [152]. When
mice make a head twitch, the head rapidly twists from side-to-
side. Each HTR consists of 5–11 head movements, with the head
n the neuropsychopharmacology of serotonergic hallucinogens.

approximately 11 msec). The behavior is similar in rats but in that
species the frequency of head movement is lower. One drawback
to traditional HTR studies is that they require direct behavioral
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Fig. 7. Effect of pretreatment with the selective 5-HT2A antagonist M100907 on
the head twitch response induced by 0.3 mg/kg 25I-NBOMe in C57BL/6J mice. Data
are presented as group means ± SEM for 20-min test sessions. **p < 0.01, significant
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4.2.5. Exploratory and investigatory behavior
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bservation that can be extremely time-consuming. However, as
e have recently demonstrated, it is possible to detect the behavior
ith a head-mounted magnet and a magnetometer coil, provid-

ng a highly sensitive, semi-automated assessment of the behavior
152,156].

The HTR induced by hallucinogens and other 5-HT agonists is
losely linked to 5-HT2A activation. It was proposed in 1982 that
he mescaline-induced HTR is mediated by the 5-HT2A receptor,
ased on the fact that the relative potency of 5-HT antagonists to
lock the behavior is correlated (r = 0.875) with their 5-HT2A affin-

ty [159]. Similar findings were later reported for the HTR induced
y DOI [160,161]. Numerous studies have shown M100907 blocks
he HTR induced by hallucinogens (Table 2). For example, we found

100907 blocks the HTR induced by the hallucinogen 25I-NBOMe
ith an ID50 = 6.2 �g/kg (Fig. 7; [156]). Based on ex vivo binding
ata it is unlikely M100907 produces any appreciable occupation of
-HT2C receptors at that dose level [162]. Studies have also demon-
trated that the highly selective 5-HT2A antagonist MDL  11,939
locks the HTR induced by DOI and TCB-2 in mice [163,164]. Mice

acking the 5-HT2A receptor gene do not produce head twitches in
esponse to mescaline, DOI, DOM, LSD, DMT, 5-MeO-DMT, psilocin,
r 1-methylpsilocin [28,165,166], although the response can be res-
ued by selectively restoring the 5-HT2A receptor gene to cortical
egions [28]. By contrast, 1 mg/kg DOI produces a significant (albeit
omewhat blunted) HTR in 5-HT2C knockout mice [167]. The fact
hat DOI can provoke head twitches in 5-HT2C knockout mice but
ot in 5-HT2A knockout mice strongly indicates the 5-HT2A recep-
or is the member of the 5-HT2 family responsible for mediating
he HTR. Similarly, there is a consensus in the literature that the
bility of DOI to induce the HTR is not blocked by selective 5-HT2C
ntagonists or mixed 5-HT2C/2B antagonists [160,168–171].

Although it has been conclusively established that the 5-
T2C receptor is not required for generation of the HTR, there

s some evidence that 5-HT2C sites may  play a modulatory role.
-HT2 agonists that are selective for 5-HT2C sites, such as (S)-6-
hloro-5-fluoro-�-methyl-1H-indole-1-ethanamine (Ro 60-0175),
Please cite this article in press as: Halberstadt AL. Recent advances i
Behav Brain Res (2014), http://dx.doi.org/10.1016/j.bbr.2014.07.016

-chloro-2-(1-piperazinyl)pyrazine (MK-212), and mCPP, do not
nduce the HTR in rats unless administered in combination with
he 5-HT2C antagonist SB 242,084 [170]. There is also evidence that
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the ability of DOI to induce the HTR is significantly attenuated by
pretreatment with selective 5-HT2C agonists, including Ro 60-0175,
CP-809,101, and mCPP [160,171–173]. These findings indicate 5-
HT2C activation suppresses expression of the HTR. Likewise, DOI
produces a biphasic dose–response curve in NIH Swiss and Swiss-
Webster mice, and SB 242084 reportedly shifts the descending arm
of the DOI response to the right [171]. Here again there is evi-
dence that the 5-HT2C receptor can inhibit the HTR. On the other
hand, as was  noted above, Canal and colleagues have reported
that 5-HT2C knockout mice show a blunted HTR to 1 mg/kg DOI
[167]. Furthermore, in contrast to many other reports, the same
investigators found pretreatment with SB 242,084 or SB 206,553
diminished the magnitude of the HTR induced by 1 mg/kg DOI in
C57BL/6J and DBA/2J mice [167,173]. It is not clear why the 5-HT2C
receptor attenuates the HTR in certain studies and augments the
response in others, but Fantegrossi et al. [171] have argued these
differences may  be strain dependent. For example, there are strain
differences in the editing of 5-HT2C mRNA [174,175]. Since 5-HT2C
editing can influence the downstream coupling of the receptor
[176], the nature of the interactions between 5-HT2A and 5-HT2C
could potentially vary by mouse strain.

4.2.3. Prepulse inhibition of startle
Prepulse inhibition (PPI) refers to the phenomenon where a

weak prestimulus presented prior to a startling stimulus will atten-
uate the startle response; PPI is often used as an operational
measure of sensorimotor gating, and reflects central mechanisms
that filter out irrelevant or distracting sensory stimuli [177]. Rats
treated with DOI [178,179], DOB [180], LSD [181,182], mescaline
[183], and 2C-B [184] show reductions in PPI. These effects can be
blocked by M100907 and MDL  11,939 [179,181,182,185]. By con-
trast, neither SB 242,084 nor the 5-HT2C/2B antagonist SER-082 are
effective. Although one study found haloperidol can block the PPI
disruption produced by hallucinogens [178], this was  not replicated
by subsequent investigations [181,186]. Lisuride also disrupts PPI
in rats, but this effect is blocked by the D2/3 antagonist raclopride
and not by MDL  11,939 [182].

4.2.4. Interval timing
Temporal perception can be markedly altered by hallucinogens.

Subjects under the influence of mescaline and LSD often report that
their sense of time appears to speed up or slow down, or they may
experience a sensation of timelessness [187–191]. Psilocybin also
alters performance on laboratory measures of timing [192].

Temporal perception can be assessed in rodents using interval
timing paradigms. For example, in the free-operant psychophys-
ical task, animals are trained to respond on two levers, and they
must respond on one lever during the first half of the trial and on
the other lever during the second half [193]. In the discrete-trials
task, animals are trained to press one lever in response to short
duration stimuli and another lever in response to long duration
stimuli, and are then challenged with a variety of stimulus dura-
tions [194]. DOI disrupts the performance of rats in both of these
tasks [195–197]. Although DOI affects performance in the discrete
trials task, it does not affect performance in a similar task where rats
have to discriminate different light intensities, indicating that DOI
is specifically influencing temporal perception and not disrupting
stimulus control or attentional processes [198]. The effect of DOI
in the discrete-trials task and that free-operant task are blocked
by ketanserin and M100907 [196,197], demonstrating the involve-
ment of 5-HT2A.
n the neuropsychopharmacology of serotonergic hallucinogens.

Measures of locomotor activity are often used to character-
ize the effects of psychoactive drugs on exploratory behavior.
Locomotion alone, however, is not necessarily a reliable measure
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Table 2
The selective 5-HT2A antagonist M100907 blocks the head twitch response induced by hallucinogens in rats and mice.

Hallucinogen M100907 Species Reference

Drug Dose Routea Potencyb Effective dosec Routea

5-MeO-DMT 30 mg/kg IP ID50 = 0.03 IP Mouse [448]
5-MeO-DMT 10 mg/kg IP 0.05 mg/kg IP Mouse [29]
DPT 3 mg/kg IP 0.01 mg/kg IP Mouse [100]
DOI 2.5 mg/kg IP ID50 = 0.005 0.04 mg/kg SC Rat [160]
DOI 3 mg/kg IP 1 mg/kg IP Rat [169]
R-(−)-DOI 3 mg/kg IP ID50 = 0.01 0.1 mg/kg SC Mouse [449]
DOI 2.5 mg/kg IP 0.25 mg/kg IP Mouse [33]
DOI 2 mg/kg IP 0.3 mg/kg IP Mouse [450]
DOI 1 mg/kg IP 0.05 mg/kg IP Mouse [34]
DOI 1 mg/kg IP 0.25 mg/kg SC Mouse [167]
DOI 1 mg/kg IP 0.025 mg/kg SC Mouse [173]
2C-I 3 mg/kg SC ID50 = 0.0045 0.1 mg/kg SC Mouse [156]
25I-NBOMe 0.3 mg/kg SC ID50 = 0.0062 0.1 mg/kg SC Mouse [156]
25I-NBMD 3 mg/kg SC ID50 = 0.0015 0.1 mg/kg SC Mouse [156]
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b ID50 = inhibitory dose50 in mg/kg.
c Dose of M100907 that produced 90–100% blockade of the head twitch response

f exploration because it includes does not distinguish specific
xploratory responses to environmental stimuli from other types of
otor activity [199]. Given the complexity of hallucinogen effects,

t is not surprising that hallucinogens cannot be distinguished from
ther drug classes using traditional open field locomotor mea-
ures [144]. However, multivariate assessment methods have been
ore successful. One example is the Behavioral Pattern Monitor

BPM), which combines features from activity chambers and hole-
oards and provides quantitative as well as qualitative measures
f the spatial and temporal structure of activity [200,201]. BPM
tudies have shown hallucinogens produce a very characteristic
rofile of behavioral effects. When rats are tested in unfamiliar BPM
hambers after administration of hallucinogens (including mesca-
ine, DOM, DOI, LSD, DMT, 5-MeO-DMT, and psilocin), the animals
isplay reduced amounts of locomotor activity, rearings, and hole-
okes at the beginning of the test session, and avoidance of the
enter of the BPM chamber is increased [202–205]. Most of these
ffects are markedly diminished in animals habituated to the BPM
hambers, indicating that hallucinogens act by enhancing neopho-
ia. The ability of hallucinogens to increase the avoidance of novel
and potentially threatening) test chambers by rats may  be anal-
gous to the enhanced sensitivity and reactivity to environmental
timuli that occurs in humans [206].

Extensive testing has confirmed this pattern of effects in the
PM is highly specific to hallucinogens [200,207–210]. For example,
lthough 8-OH-DPAT and other selective 5-HT1A agonists reduce
ocomotor activity, rearings, and holepokes in rats, these effects
re not influenced by environmental familiarity and hence are
ikely to reflect sedation [208]. When Adams and Geyer [211]
ompared lisuride and LSD in the BPM, they found the two com-
ounds produce markedly different patterns of effects. Lisuride
roduces effects that are similar to those of apomorphine and other
opamine agonists, with sedative effects occurring at low doses and
erseverative patterns of hyperactivity occurring at higher doses.

The 5-HT2A receptor is responsible for mediating most of the
ffects of hallucinogens in the rat BPM. It was first shown that
itanserin and ketanserin block the effects of mescaline, DOM, and
OI in the BPM, indicating 5-HT2 involvement [204]. Later studies
emonstrated that the effects of DOI are blocked by M100907 but
ot by SER-082 [212], confirming mediation by 5-HT2A. The action
f indoleamine hallucinogens in the BPM is more complex mech-
Please cite this article in press as: Halberstadt AL. Recent advances i
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nistically, with 5-HT1A and 5-HT2A receptors contributing to the
ffects of LSD and 5-MeO-DMT [205,213–215].

Hallucinogens have also been tested in a version of the BPM
esigned for mice [216]. In contrast to rats, phenylalkylamine
and indolealkylamine hallucinogens produce disparate effects
on exploratory and investigatory behavior in C57BL/6J mice.
Phenylalkylamines, including DOI, mescaline, and TCB-2, inhibit
investigatory behavior and alter locomotor activity in a dose-
dependent manner, increasing activity at low to moderate doses
and reducing activity at high doses [217,218]. Other groups have
reported similar findings with DOM and DOI in mice [146,219–221].
The increase in locomotor activity induced by 1 mg/kg DOI,
25 mg/kg mescaline, or 3 mg/kg TCB-2 is blocked by low doses of
M100907 and is absent in 5-HT2A knockout mice. By contrast, the
reduction of locomotor activity induced by 10 mg/kg DOI  is attenu-
ated by SER-082. Taken together, it appears that 5-HT2A and 5-HT2C
receptors have countervailing effects on locomotor activity, with 5-
HT2A activation increasing activity and 5-HT2C activation reducing
activity. Administration of psilocin and 5-MeO-DMT to C57BL/6J
mice reduces locomotor activity and investigatory behavior [166].
These effects are blocked by WAY-100635 but are unaffected by SB
242,084 or by 5-HT2A gene deletion. Similarly, 5-MeO-DMT has no
effect on activity in 5-HT1A knockout mice [222]. Hence, whereas
the phenylalkylamines act through 5-HT2 sites to alter behavior in
the mouse BPM, indoleamine hallucinogens appear to act via the
5-HT1A receptor.

4.3. Tolerance studies

As noted in Section 3.2, serotonergic hallucinogens produce a
profound degree of tolerance and cross-tolerance in animals and
humans. Although very little is known about the mechanisms lead-
ing to the development of tolerance to hallucinogens in humans,
there is evidence in animals that tolerance is linked to 5-HT2A
downregulation. Rats treated repeatedly with DOM, LSD, or psilocin
show a significantly lowered density of 5-HT2A receptors in sev-
eral brain regions [223–225]. Binding to 5-HT1A, 5-HT1B, �2, �1, or
D2 receptors is unaffected. Another study demonstrated that treat-
ment with 1 mg/kg DOI for 8 days produced a significant reduction
in the density of 5-HT2A receptors in the cortex, but there was  no
change in 5-HT2C receptor expression [109]. An identical treatment
regimen caused tolerance to develop in rats trained to discriminate
DOI. Likewise, there is a significant reduction of 5-HT2A-stimulated
[35S]GTP�S binding in the medial prefrontal cortex (mPFC) and
anterior cingulate cortex in rats treated with LSD (0.13 mg/kg/day)
n the neuropsychopharmacology of serotonergic hallucinogens.

for 5 days [226]; this indicates tolerance to LSD is associated with
a reduction of 5-HT2A signaling.

Although most hallucinogens produce tolerance in humans,
DMT  seems to be the exception. It has been reported that DMT
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oes not evoke tolerance in man, even after an intramuscular
IM) dosage regimen of 0.7 mg/kg twice daily for five days [227].

ore recently, Strassman et al. [228] found there was  no toler-
nce to the subjective effects of DMT  in volunteers who received
our intravenous (i.v.) injections of 0.3 mg/kg at 30 min  inter-
als. In vitro experiments have shown that exposure to LSD or
OI desensitizes 5-HT2A and 5-HT2C receptors in transfected cell

ines [108,229]. However, after exposure to DMT, 5-HT2C receptors
howed desensitization but there was no change in the response
o 5-HT2A activation [108]. These observations suggest that DMT
ails to induce tolerance because it does not desensitize the 5-HT2A
eceptor.

. Hallucinogen effects on neuronal activity

.1. Locus coeruleus

The locus coeruleus (LC), located in the dorsal pons, is the source
f almost all noradrenergic projections in the CNS. LC neurons are
esponsive to sensory stimuli, especially of a novel or arousing
ature, and the firing of LC neurons is markedly increased by nox-

ous stimulation (reviewed by: [230]). Intravenous administration
f mescaline (2 mg/kg), LSD (5–10 �g/kg), DOM (20–80 �g/kg), DOB
50–100 �g/kg), or DOI (16–50 �g/kg) profoundly enhances the
esponses of LC neurons to sensory stimuli while simultaneously
epressing their spontaneous firing [231–234]. After administra-
ion of hallucinogens, the enhancement of responsiveness is so
ronounced that even innocuous sensory stimuli normally inef-
ective at driving LC cell firing will evoke a response [231]. The
bility to produce opposite effects upon spontaneous and sensory-
voked LC firing is a specific property of LSD-like drugs, as other
harmacological agents that alter the basal activity of LC cells (e.g.,
+)-amphetamine, clonidine, desipramine, or idazoxan) do not alter
voked LC firing [231,232,234]. The observation that hallucinogens
ecrease the spontaneous activity of LC cells is supported by the
ork of Done and Sharp [235] who found that DOI and DOB lower

he concentration of NE in hippocampal dialysates, which indicates
hose compounds decrease tonic NE release from LC projections.

The effects of hallucinogens upon LC unit activity appear to be
ediated by 5 HT2A receptors. The 5-HT2 antagonists ketanserin

nd ritanserin have been shown to block the actions of hallucino-
ens in the LC [232,233]. Furthermore, Szabo and Blier [236] found
hat the ability of DOI to alter the activity of LC neurons is abol-
shed by M100907. Nonetheless, 5-HT2A receptors are sparsely
istributed within the LC (e.g., [237]), and application of the 5-
T2A/5-HT3 agonist quipazine or hallucinogens such as DOI directly

nto the LC does not mimic  the effects of their systemic administra-
ion [232–234,238]. Intravenous administration of mescaline and
SD also had no effect on the ability of locally applied acetylcholine,
lutamate (Glu), or substance P to excite LC neuronal activity [231].
resumably then, hallucinogens act upon LC afferents, altering the
ring of LC cells indirectly by modulating the activity of one or more

nput pathways.
Chiang and Aston-Jones [234] reported that the decrease in

C spontaneous firing induced by DOI could be blocked by the
ABAA receptor antagonists bicuculline and picrotoxin, whereas

he ability of DOI to enhance sensory-evoked LC responses
as blocked by the NMDA receptor antagonist 2-amino-5-
hosphonopentanoic acid but not by the AMPA receptor antagonist
-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Thus, hallucino-
ens appear to tonically activate GABAergic input to LC and
Please cite this article in press as: Halberstadt AL. Recent advances i
Behav Brain Res (2014), http://dx.doi.org/10.1016/j.bbr.2014.07.016

oncomitantly facilitate glutamatergic sensory input. It is likely that
he nucleus prepositus hypoglossi (PrH), an area known to provide
irect GABAergic inhibitory input into the LC [239,240], mediates
he hallucinogen-induced inhibition of spontaneous LC activity.
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Although one group reported that microinjection of quipazine
directly into the PrH did not alter LC unit activity in the rat [238],
subsequent work confirmed that DOI depolarizes PrH neurons
[241]. Moreover, electrolytic lesions of PrH significantly attenuate
the ability of systemic quipazine injections to reduce the frequency
of LC unit discharge [238]. This strongly implicates the PrH or one
of its afferents as the site through which 5-HT2A agonists modulate
spontaneous LC firing. The identity of the specific LC afferent(s)
responsible for the hallucinogen-induced facilitation of LC gluta-
matergic sensory input is currently unknown. Although the nucleus
paragigantocellularis in the ventrolateral rostral medulla is a major
source of excitatory input into the LC [234,242], the ability of
somatosensory stimuli to excite the LC is unaffected by lesions of
nucleus paragigantocellularis [243]. The LC also receives excitatory
input from the prefrontal cortex (PFC), both directly and indirectly
[244–246], and the excitatory effects of hallucinogens on the LC
may  be mediated by those pathways. As will be discussed below
in Section 5.2, hallucinogens increase the firing of PFC projection
neurons.

The LC projects heavily to cortex, where there is overlap
between the distribution of �1-adrenoceptors and 5-HT2A recep-
tors [247]. Interestingly, in the PFC, �1-adrenoceptors and 5-HT2A
receptors have similar effects on the activity of layer V pyrami-
dal neurons [248]. Hallucinogens increase the intensity of sensory
experiences and affective responses, and it is tempting to speculate
that the LC may  contribute to these effects. Indeed, the ability of LSD
to potentiate neophobia in rats in the Behavioral Pattern Monitor
is diminished by depletion of norepinephrine from LC projections
[249].

5.2. Prefrontal cortex (PFC)

5.2.1. Effects on PFC network activity in vitro
It is now recognized that the PFC is an important site of action

for hallucinogens. The 5-HT2A receptor is expressed heavily in
the PFC and adjacent cortical regions, particularly in lamina V
[237,250–252]. In situ hybridization histochemistry has confirmed
that most of the cells in monkey and human PFC express 5-HT2A
mRNA [253]. Likewise, in rats, a large percentage of the cells in
the superficial, middle, and deep layers of the secondary motor,
anterior cingulate (ACA), prelimbic (PrL), and infralimbic (IL) areas
express 5-HT2A mRNA [254,255]. Almost all prefrontal pyramidal
neurons express the 5-HT2A receptor, with the receptor localized
primarily to the proximal apical dendrites [237,252,256,257]. In
addition to pyramidal neurons, 5-HT2A receptors are also expressed
by subsets of parvalbumin- and calbindin-positive interneurons
[253,255,256,258–260]. Approximately 20–25% of the glutamic
acid decarboxylase-positive cells in PFC express 5-HT2A mRNA
[253]. From their morphology these interneurons appear to be
basket cells and chandelier cells [258]. GABAergic interneurons
expressing parvalbumin and calbindin are sources of perisomatic
inhibition that synchronize the oscillatory firing of large ensembles
of pyramidal neurons [261–263]. Therefore, 5-HT2A receptors are
likely to have direct and indirect effects on the activity of pyramidal
cells (see Fig. 8).

Electrophysiological studies have shown that 5-HT2A activation
(with DOB or DOI) produces several effects on the membrane
properties of layer V pyramidal neurons: there is a moderate
depolarization, spike-frequency accommodation is reduced, and
the afterhyperpolarization (AHP) that normally follows a burst
of spikes is replaced by a slow depolarizing afterpotential (sADP)
[264–266]. The effect on AHP is mediated by activation of PLC�
n the neuropsychopharmacology of serotonergic hallucinogens.

signaling, which inhibits one of the currents (IsAHP) underlying
the AHP [267,268]; the induction of sADP is probably a conse-
quence of activating a Ca2+-dependent nonselective cation channel
(ICAN). Both of these effects increase the excitability of pyramidal
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Fig. 8. Distribution of 5-HT2A receptors in neurons in layer V of the prefrontal
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ortex. 5-HT2A receptors are expressed by glutamatergic pyramidal neurons and
ABAergic basket cells and chandelier cells. Hallucinogens increase the frequency of
pontaneous EPSCs and IPSCs in layer V pyramidal neurons by enhancing recurrent
lutamatergic and GABAergic network activity.

eurons [269]. DOI also produces a 5-HT2A-dependent inhibition
f voltage-dependent Na+-currents and L-type Ca2+-currents
n PFC pyramidal cells via the PLC�–IP3–protein kinase C and
LC�–IP3–calcineurin signaling cascades, respectively, effects that
ould likely influence dendritic integration [270,271].

Hallucinogens have profound effects on excitatory and
nhibitory transmission in medial PFC (mPFC) in vitro. Recordings
rom brain slices have shown that DOI and other 5-HT2A agonists
roduce a marked enhancement of the frequency and ampli-
ude of spontaneous excitatory postsynaptic potentials/currents
EPSPs/EPSCs) in most layer V pyramidal neurons in mPFC
272,273] (Zhou and Hablitz, 1999). These effects are mediated
y an increase in Glu release and subsequent activation of post-
ynaptic AMPA receptors [272,274]. Because these studies failed
o locate any glutamatergic mPFC neurons that were driven to
re action potentials by 5-HT2A activation, it was initially thought
hat the increase in Glu release was caused by local activation of
he terminals of glutamatergic thalamocortical afferents [275,276].
owever, although the ability of 5-HT to induce EPSCs is lost after
eletion of the 5-HT2A gene (htr2A−/− mice), the effect can be res-
ued by selective restoration of 5-HT2A receptors to pyramidal
eurons in the forebrain [277]. The htr2A−/− mice used by Weis-
taub et al. were generated by inserting a floxed Neo-stop cassette
etween the promoter and the coding region, so the gene could
e rescued by crossing the mice with Emx1-Cre+/− mice (which
electively expresses Cre recombinase in the forebrain). The fact
hat the EPSCs were rescued in htr2A−/− × Emx1-Cre+/− mice shows
hat projections from thalamus and other subcortical structures are
Please cite this article in press as: Halberstadt AL. Recent advances i
Behav Brain Res (2014), http://dx.doi.org/10.1016/j.bbr.2014.07.016

ot being directly excited by 5-HT2A receptors. More recent work
as identified a subpopulation of pyramidal neurons in mPFC deep

ayer V that are depolarized and excited by DOI [278], indicating
allucinogens induce spontaneous EPSCs by increasing recurrent
 PRESS
 Research xxx (2014) xxx–xxx

glutamatergic network activity. 5-HT2A receptor activation also
increases the frequency of spontaneous IPSCs in pyramidal neurons
(Zhou and Hablitz, 1999), an effect that is mediated by activa-
tion of neighboring GABAergic interneurons [260,279]. Therefore,
it appears hallucinogens recruit glutamatergic and GABAergic neu-
rons, which produces a marked enhancement of excitatory and
inhibitory recurrent network activity in mPFC [280,281]. This
conclusion is supported by microdialysis data showing that hallu-
cinogens increase extracellular levels of Glu [282–284] and GABA
[285] in mPFC.

There is evidence that enhancement of glutamatergic activ-
ity in mPFC plays an important role in mediating the effects
of hallucinogens. Manipulations that suppress the facilitation of
recurrent glutamatergic network activity, including the use of
mGlu2/3 agonists, �-opioid agonists, adenosine A1 agonists, and
AMPA antagonists [273,286–290], block many of the neurochemi-
cal and behavioral effects of hallucinogens. These interactions have
been demonstrated most extensively for the HTR (see Table 3),
a 5-HT2A-mediated behavior that can be provoked by infusion of
DOI directly into the mPFC [291,292]. Likewise, the discrimina-
tive stimulus effects of LSD are attenuated by the mGlu2/3 agonist
LY379268 and augmented by the mGlu2/3 antagonist LY341495
[112], and there is evidence that the LSD stimulus cue is mediated
by activation of 5-HT2A receptors in the ACA [114]. Another exam-
ple is the ability of DOI to increase impulsive responding in rats,
which is attenuated by administration of LY379268 systemically
or directly into mPFC [293,294]. In addition to 5-HT2A antagonists,
mGlu2/3 agonists and AMPA antagonists also block the ability of DOI
to increase cortical expression of BDNF and the immediate-early
genes c-fos, erg-2, and Arc [289,294–298]. Evidence has emerged
that mGlu2 and 5-HT2A receptors can form heteromeric com-
plexes in cortex [298,299], and these complexes may  mediate the
crosstalk that occurs between these receptors. It is important to
note, however, that it has not been conclusively demonstrated that
the heterodimers are responsible for the interactions between 5-
HT2A and mGlu2 [300,301], and it is possible the crosstalk is purely
functional and occurs at the circuit level. mGlu2 receptors func-
tion predominantly as presynaptic autoreceptors [302], so mGlu2
activation could potentially suppress 5-HT2A-induced spontaneous
EPSCs by reducing Glu release from axon terminals.

5.2.2. Effects on PFC network activity in vivo
Recent studies have examined the effects of hallucinogens on

PFC activity in vivo. Extracellular recordings from anesthetized
rats have shown that DOI (0.05–0.8 mg/kg, i.v.) and 5-MeO-DMT
(0.1 mg/kg, i.v., in combination with the monoamine oxidase
inhibitor clorgyline) produce a net excitatory effect on pyrami-
dal neurons in the PrL, IL, and ACA regions of mPFC [303–305].
Individual pyramidal neurons are either excited (38–53%), inhib-
ited (27–35%), or show no response. It appears that these effects
are mediated by recruitment of glutamatergic and GABAergic
neurons because the excitatory response to DOI is blocked by
LY379268 and the inhibitory response is blocked by the GABAA
antagonist picrotoxinin [303,304]. These effects are also blocked by
5-HT2A antagonists. In contrast to those findings, another group has
reported that higher doses of DOI (3–5 mg/kg, i.p.) tend to inhibit
the firing of pyramidal cells in ACA and the ventral, dorsolateral,
and lateral orbitofrontal cortices of behaving rats [306].

Despite the discrepant findings outlined above, hallucinogens
produce strikingly similar effects on cortical network activity in
anesthetized and freely moving rats. Under anesthesia or dur-
ing slow-wave sleep, cortical networks display slow (0.5–1 Hz)
n the neuropsychopharmacology of serotonergic hallucinogens.

and delta (1–4 Hz) oscillations [307–309] that reflect alternations
between periods of silence (DOWN states) and periods of depo-
larization with repetitive spiking (UP states). This contrasts with
the active waking state, which is characterized by fast rhythms in
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Table  3
Receptor agonists and antagonists that modulate the electrophysiological effects of 5-HT2A activation in the mPFC also alter the head twitch response in rats and mice.

Receptor Ligand
pharmacology

5-HT2A-induced sEPSCs in layer V
pyramidal neuronsa

DOI-induced head twitch
responsea

5-HT2A Antagonist ↓ M100907
[272]
Beique et al., 2007
[290]

↓ M100907
[160]

5-HT2C Antagonist Ø SB242084
[248]
Beique et al., 2007

Ø SB242084
[170]
[171]

AMPA Antagonist ↓ LY293558
[272]
[274]
↓ LY300164
[274]
↓ CNQX
[273]
Beique et al., 2007
[290]

↓ LY293558
[274]
↓ GYKI 52466
[274]
↓ DNQX
[451]
↓ NBQX
[452]

�-opioid Agonist ↓ DAMGO
[286]
↓ endomorphin-1
[286]

↓ morphine
[453]
↓ buprenorphine
[454]
↓ fentanyl
[454]

mGlu2/3 Agonist ↓ LY354740
[287]
↓ LY379268
[287]
[273]

↓ LY354740
[455]
[273]
↓ LY379268
[273]

Antagonist ↑ LY341495
[287]

↑ LY341495
[455]

Adenosine A1 Agonist ↓ N6-cyclopentyladenosine
[288]

↓ N6-cyclohexyladenosine
Marek et al., 2009
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NQX, 6-cyano-7-nitroquinoxaline-2,3-dione; DAMGO, [d-Ala2, N-MePhe4, Gly-ol5

etrahydrobenzo[f]quinoxaline-7-sulfonamide; sEPSCs, spontaneous excitatory pos
a The specified ligand reduces the response (↓), has no effect (Ø), or enhances the

he gamma range (30–80 Hz) that play a putative role in a multi-
ude of perceptual and cognitive functions [310–314]. Recordings
f local field potentials (LFPs) from the PFC have shown DOI reduces
ow-frequency oscillations in anesthetized rats [315], and dampens
amma  oscillations in freely moving rats [306]. DOI also desynchro-
izes the firing of pyramidal neurons so that their activity is no

onger coupled to LFPs [306,315]. 5-MeO-DMT has similar effects
n low-frequency PFC network activity in anesthetized rats [305].
aken together, these findings demonstrate that hallucinogens dis-
upt the oscillatory activity of cortical networks and reduce the
ikelihood that individual pyramidal neurons will fire in synchrony.

Similar to the LFP data in rats, magnetoencephalographic (MEG)
ecordings in humans have shown that psilocybin (2 mg,  i.v.) pro-
uces broadband reductions in cortical oscillatory power [316].
ynamic causal modeling of the MEG  data indicates that psilo-
ybin reduces cortical synchrony by increasing the excitability of
eep-layer pyramidal neurons. Likewise, electroencephalographic
tudies have reported that ayahuasca (containing the equivalent of
.85 mg/kg DMT) reduces cortical oscillatory power across multiple
requency bands [317,318]. Since cortical oscillations play a funda-

ental role in a diverse set of mental processes and are required
or the coordination of neural processing [319–324], it is tempting
o speculate that the reduction of neuronal synchrony by hallu-
inogens could be responsible for mediating many of their effects
n perception and cognition. Along these lines, there is evidence
hat schizophrenia patients show deficits of gamma oscillations and
ynchrony [325–328] and reductions in slow-wave sleep [329], and
t has been hypothesized that these abnormalities play an impor-
ant role in the pathophysiology of psychosis.
Please cite this article in press as: Halberstadt AL. Recent advances i
Behav Brain Res (2014), http://dx.doi.org/10.1016/j.bbr.2014.07.016

As was noted earlier, neuroimaging studies have demonstrated
hat hallucinogens alter activity in the frontal cortex. Studies
sing PET and single-photon emission computed tomography
phalin; DNQX, 6,7-dinitroquinoxaline-2,3-dione; NBQX, 2,3-dioxo-6-nitro-1,2,3,4-
ptic currents.
nse (↑).

(SPECT) have consistently found that hallucinogens produce
frontal hyperactivity. Administration of mescaline sulfate (500 mg,
p.o.) produces a hyperfrontal metabolic pattern, especially in the
right hemisphere [53]. PET studies with [18F]fluorodeoxyglucose
([18F]FDG) have shown that psilocybin (0.20–0.36 mg/kg, p.o.)
also produces a hyperfrontal pattern, with robust metabolic
increases in frontolateral and frontomedial cortical regions and
ACA [54,330]. Similar patterns of brain activation were found in
subjects administered ayahuasca as part of a SPECT study [331]. By
contrast, it has been argued, based on functional MRI (fMRI) data,
that psilocybin reduces resting-state brain activity [332]. In that
study, volunteers received 2 mg  i.v. psilocybin and regional blood
flow and venous oxygenation were assessed using arterial spin
labeling and blood-oxygen level-dependent (BOLD) fMRI scans.
Psilocybin reduced blood flow and BOLD signal in ACA and mPFC,
and there was evidence of reduced coupling between mPFC and the
posterior cingulate cortex. Based on those results, Carhart-Harris,
Nutt, and colleagues concluded that psilocybin reduces activity
and connectivity in core nodes of the default-mode network, brain
regions that are active during the resting state and potentially
involved in introspective processes (for more information, see:
[333–335]). It remains to be determined why  psilocybin produces
such discrepant effects in PET and fMRI studies. One potential
explanation is that the hemodynamic responses measured by fMRI
are actually better correlated with cortical oscillatory activity than
with neuronal firing [336–340]. Indeed, recent work by Artigas and
co-workers confirms the decoupling of BOLD measures and spiking
in rats [305]. According to their report, 5-MeO-DMT (0.1 mg/kg,
i.v.) increased the firing rate of mPFC pyramidal cells by 215%, but
n the neuropsychopharmacology of serotonergic hallucinogens.

significantly reduced the BOLD signal (measured by fMRI) and the
power of low-frequency oscillations (measured by LFP recordings).
Therefore, PET and fMRI studies may  be assessing different types
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f neurophysiological responses to psilocybin, with PET measuring
ffects on neuronal firing (reflected by changes in metabolic
ctivity and [18F]FDG uptake) and fMRI measuring effects on
ortical oscillatory activity. Alternatively, it is possible that the
emodynamic changes induced by psilocybin are unrelated to

ts hallucinogenic effects. Psilocybin and its O-dephosphorylated
etabolite psilocin activate the 5-HT1A receptor in vivo [20,166],

nd 5-HT1A agonists are known to alter hemodynamic measures
n cingulate cortex and other brain regions [341].

.2.3. Interactions of the PFC with other structurescortical and
ubcortical sites

Since most of the projections from PFC to cortical and sub-
ortical regions originate from pyramidal neurons in deep layers
–VI, hallucinogens could potentially profoundly alter how the PFC
egulates activity in downstream regions. Indeed, there is some evi-
ence that hallucinogens excite efferent projections from the PFC.
or example, DOI activates serotonergic neurons in the dorsal raphe
ucleus indirectly by exciting the projection from mPFC [303,342].
imilar findings have been reported for the projection to the ventral
egmental area [303]. Additionally, a recent study by Mocci et al.
284], Mocci et al. [284] assessed whether 5-HT2A receptors modu-
ate the activity of the projection from mPFC to nucleus accumbens
NAc). Retrodialysis of DOI into the mPFC increased the extracel-
ular level of Glu in the NAc by 174%, indicating that DOI activates
Ac-projecting mPFC neurons. According to another report, 5-HT2A

eceptors excite cortico-cortical projections originating from mPFC
343]. In that study, microiontophretic application of 5-HT excited
yramidal neurons with commissural/callosal projections. Because
-HT had no effect in the presence of the selective 5-HT2A antag-
nist MDL  11,939, the most reasonable interpretation is that the
xcitation is mediated by 5-HT2A receptors, but this needs to be
onfirmed using a selective agonist.

The PFC exerts top-down executive control over processing in
emporal and parietal cortices [344–347]. As shown by FDG-PET
maging, psilocybin increases absolute cerebral metabolic rates in
he parietal and temporal cortices [54,348]. It is conceivable that
allucinogens could enhance the activity of neuronal ensembles in
hose regions by driving the firing of glutamatergic projections from
he PFC. Moreover, 5-HT2A receptors are expressed at high to mod-
rate densities in temporal and parietal cortical areas [349–353],
o the influence exerted by the PFC would act in concert with
ny local response induced by hallucinogens. Hallucinogenic drugs
roduce body image changes, derealization, and depersonalization
354,355], effects that are specifically linked to altered activity in
ronto-parietal cortex and occipital cortex [356]. This is not sur-
rising because the posterior parietal cortex is part of the dorsal
isual stream and generates multiple egocentric representations of
pace [357–359]. Likewise, hallucinogens enhance memory recall
360], sometimes producing extremely vivid recollections. Since
he medial temporal lobe plays a crucial role in the storage and
ecall of autobiographical memories [361], it has been proposed
hat hallucinogen effects on memory recall may  be linked to acti-
ation of this region.

The amygdala, which is involved in generating fear responses
nd processing the emotional context of sensory input [362], is
nother subcortical structure potentially affected by changes in
he activity of mPFC projections. An fMRI BOLD study in healthy
olunteers revealed that psilocybin (0.16 mg/kg p.o.) reduces
ctivation of the amygdala by negative and neutral pictures, and
he BOLD signal change was inversely correlated with reports of
ncreased positive mood [363]. Likewise, an electrical neuroimag-
Please cite this article in press as: Halberstadt AL. Recent advances i
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ng study conducted by the same group found psilocybin impairs
rocessing of facial expression valence in the amygdala and other

imbic regions [364]. In healthy subjects, there is an inverse
orrelation between the density of mPFC 5-HT2A binding and the
 PRESS
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responsiveness of the amygdala to threatening stimuli [365], sug-
gesting processing in the amygdala is regulated by 5-HT2A receptors
in mPFC. Hence, the ability of psilocybin to reduce emotional pro-
cessing in the amygdala could potentially be a consequence of
increased inhibitory top-down control from the PFC [364].

The IL subregion of mPFC impairs fear conditioning by inhibit-
ing central amygdaloid nucleus output neurons, which project to
brainstem and hypothalamic sites responsible for expressing fear
responses [366]. Although it was not initially clear how mPFC
inhibits the amygdala because the projection is glutamatergic
[367,368], the mechanism is now believed to involve excitation
of GABAergic neurons in the intercalated nuclei of the amygdala
[369–371]. Psilocybin and TCB-2 have been shown to facilitate the
extinction of fear conditioning in C57BL/6J mice [372,373], which
could be a consequence of activating the projection from IL to the
intercalated nuclei. However, it has not been ruled out that psilo-
cybin and TCB-2 are acting directly in the amygdala; excitatory
and inhibitory neurons in the amygdala express 5-HT2A receptors
[374,375], and DOI and other 5-HT2A agonists act locally to produce
direct excitatory and indirect inhibitory effects in the amygdala
[376–378].

5.2.4. Interactions of the PFC with other structures: effects on
cortico-striato-thalamo-cortical (CSTC) loops

It has been theorized that hallucinogen-induced altered states
may arise in part through effects on cortico-striato-thalamo-
cortical (CSTC) feedback loops [348,356,379]. CSTC loops are
parallel, anatomically segregated circuits relaying information
between the basal ganglia, thalamus, and cortex [380,381]. In each
circuit, projections from multiple cortical regions converge in spe-
cific subregions of the striatum. The striatum, in turn, projects to
the pallidum, which sends feedback to the cortex via the thala-
mus. In this regime, the thalamus serves as a filter that restricts or
gates the flow of sensory and cognitive information to the cortex.
There has been some debate about the exact number of CSTC loops
[382,383], but at least five have been putatively identified, each
serving a different function. The limbic loop, for example, receives
input from the temporal lobe, ACA, and medial orbitofrontal cortex,
and links the ventral striatum (including NAc, lateral caudate, and
ventromedial putamen), ventral pallidum (VP), and mediodorsal
thalamus. Vollenweider and Geyer [356] have proposed that psilo-
cybin reduces thalamic filtering by activating 5-HT2A receptors in
the limbic CSTC loop, resulting in excessive stimulation of frontal
regions, hyperfrontality, and symptoms such as sensory overload
and hallucinations.

Although involvement of CSTC loops in the effects of hallucino-
gens is admittedly speculative, it does receive some support from
the fact that hallucinogens disrupt PPI in humans and in animal
models [90,178,179,182,183,384]. Importantly, PPI is regulated by
components of the limbic CSTC loop, including mPFC, NAc, and
VP [385]. The VP appears to be responsible for the disruption of
PPI by hallucinogens [386]. DOI disrupts PPI when infused directly
into the VP, but not when infused into the NAc. Likewise, infusion
of M100907 into the VP prevents systemically administered DOI
from disrupting PPI. It is important to note, however, that the PPI-
disruptive effects of DOI are partially blocked when M100907 is
infused into the dorsal striatum, so it is not entirely certain that the
VP is the only site of action for DOI.

5.3. Visual cortex

Hallucinogens produce profound effects on visual perception.
n the neuropsychopharmacology of serotonergic hallucinogens.

This includes visual distortions such as micropsia or macropsia,
kinetopsia, pareidolias, hyperchromatopsia, dysmorphopsia, and
polyopia-like trailing phenomena; elementary imagery composed
of multicolored geometric patterns; and complex imagery with
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cenes, objects, and people (see Fig. 5). The visual imagery induced
y hallucinogens is extremely vivid and can be observed with the
yes open or closed. When scientists began to experiment with
escaline at the end of the nineteenth century almost all of their
ork focused on the visual phenomenology [387–392]. Despite

ts highly subjective nature, the drug-induced imagery has been
haracterized in great detail [393,394]. Heinrich Klüver [393] was
he first to recognize that all of the elementary geometric hallu-
inations induced by mescaline are elaborated variations of four
asic forms, which he called form constants: (a) tunnels and fun-
els, (b) spirals, (c) lattices and checkerboards, and (d) cobwebs.
he form constants are not unique to hallucinogens and can occur
uring a variety of hallucinatory states, including migraine aura
395], epilepsy (Horowitz et al., 1967), sensory isolation [396],
iewing flickering light [397,398], and electrical cortical stimula-
ion [399,400].

Several theoretical explanations for geometric visual halluci-
ations have been proposed based on retinocortical mapping and
he architecture of V1 [401–405]. According to these mathemat-
cal models, excitation of V1 neurons produces self-organizing
atterns of activity that correspond to Klüver’s form constants.
he excitation of V1 is presumably driven by 5-HT2A receptors
ecause ketanserin blocks the visual hallucinations induced by
silocybin [85,89]. There are moderate to high densities of 5-
T2A receptors in V1 [349,350,353,406], with the highest level
ccurring in geniculorecipient sublayer IVc� [350]. Similar to
ther cortical regions, almost all glutamatergic pyramidal neu-
ons and very few GABAergic interneurons in V1 express 5-HT2A
RNA [407,408]. A recent electrophysiology study conducted in

nesthetized macaque monkeys revealed that DOI produces a com-
ination of excitatory and inhibitory effects in V1, exciting neurons
ith low firing rates and inhibiting neurons with high firing rates

407]. Since neuronal firing in V1 is driven by visual stimuli, one
ossible interpretation is that DOI reduces the response to visual

nput while enhancing spontaneous internally driven activity. It
s fairly well-established that hallucinogens reduce retinocortical
ransmission [409–411]. Indeed, psilocybin inhibits N170 visu-
lly evoked potentials in human subjects via 5-HT2A [89,412].
isual input stabilizes network activity in V1 by driving inhibitory

nterneurons [413]. Therefore, a reduction of visual input, cou-
led with an increase in the excitability of pyramidal neurons,
ould destabilize network activity in area V1, generating patterns
f neuronal firing that are perceived as geometric form con-
tants.

In contrast to the elementary visual hallucinations, which are
inked to area V1, complex visual hallucinations probably arise
rom 5-HT2A activation in higher level visual areas. There is evi-
ence that excitation of Brodmann area (BA) 19 and BA 37 can
roduce complex visual hallucinations [414–416]. Among patients
ith Parkinson’s disease, approximately 22% experience complex

isual hallucinations [417]. Their visual hallucinations are linked to
levated levels of 5-HT2A receptor binding in ventral visual pathway
418,419], and can be ameliorated by blocking 5-HT2A receptors.
or example, a PET imaging study with [18F]setoperone found
hat visual hallucinations in Parkinson’s patients are associated
ith unusually high levels of 5-HT2A binding in the inferooc-

ipital gyrus (BA 19), fusiform gyrus (BA 20 and BA 37), and
nferotemporal gyrus (BA 20) [418]. According to another study
onducted post-mortem, Parkinson’s patients with visual halluci-
ations show elevated levels of 5-HT2A binding in the inferolateral
emporal cortex (BA 21) [419]. Two clinical trials have shown
hat the selective 5-HT2A inverse agonist pimavanserin reduces
Please cite this article in press as: Halberstadt AL. Recent advances i
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he severity of hallucinations in Parkinson’s disease [420,421]. The
typical antipsychotics clozapine and risperidone, which block the
-HT2A receptor, are also effective against the visual hallucinations
422–424].
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6. Summary

Despite the complexity of hallucinogen effects, we  are beginning
to understand how these substances work in the brain. The 5-HT2A
receptor was  first identified about thirty years ago as a possible site
of action of hallucinogens. It is now clear that most of the effects
of hallucinogens are mediated by 5-HT2A activation. Although the
vast majority of this evidence was  derived from studies in animals,
the resumption of human studies with hallucinogens has provided
additional support.

Recent clinical trials have provided a highly detailed charac-
terization of hallucinogen effects. However, most of this work has
focused on one hallucinogen (psilocybin). By comparison, very lit-
tle is known about the effects of other agents. This is especially true
for ergoline and phenylalkylamine hallucinogens. One of the most
characteristic properties of hallucinogens is how unpredictable
their effects can be. The exact nature of the experience is highly
variable and depends on the mood and expectations of the subject
(the “set”) as well as the environment in which the drug is ingested
(the “setting”) (Bercel et al., 1955) [425–427]. Depending on the cir-
cumstances, the effects of hallucinogens may  be perceived as being
highly pleasurable or highly aversive (e.g., Aldous Huxley’s descrip-
tion of mescaline as “heaven and hell”). Although hallucinogens act
in a relatively unspecific manner [428], and hence a broad range of
experiences are possible, previous clinical studies have confirmed
that there is also a great deal of similarity between the effects of
different hallucinogens. In other words, although it is impossible
to predict exactly what type of experience will be produced by,
for example, LSD or psilocybin, it appears that for the most part
any experience produced by LSD can also occur with psilocybin.
Thus, volunteers could not identify any clear differences between
the subjective effects of those two compounds when administered
by blind dosing [37–39,41]. However, those studies need to be
repeated using modern psychometric assessment methods. Addi-
tionally, it is not clear to what extent those findings extend to other
hallucinogens, or even to higher doses of LSD and psilocybin. One
potentially unique aspect of the LSD experience is that it reportedly
occurs in two  distinct temporal phases [206,427,429,430], but this
needs to be confirmed by future investigations.

It appears that 5-HT2A activation is a common characteristic
of serotonergic hallucinogens and is responsible for mediating
their shared effects, but this does not eliminate the possibility that
other receptors may  play an ancillary role. There are pharmaco-
logical differences between the phenalkylamine, tryptamine, and
ergoline classes, as well as between specific compounds within
each class, and these differences could potentially influence the
subjective effects [20]. The receptors activated by hallucinogens
may  be analogous to individual musical notes that can be played in
combination to generate chords associated with unique subjective
impressions [431], with 5-HT2A receptor activation being akin
to the root note. Extramural investigations have attempted to
categorize the existence of subtle subjective differences between
the effects of different hallucinogens (e.g., [432,433]). However,
it is not clear to what extent the apparent differences between
individual compounds are influenced by expectation and by other
factors. There are also dose- and route-dependent variations in the
effects of hallucinogens, which can alter both the intensity and the
qualitative nature of the response. Furthermore, even individual
subjects may  experience markedly different responses to the same
drug on different occasions [434]. The possibility exists that for
hallucinogen effects, there may  be just as much intra-drug variabil-
ity as there is inter-drug variability. Only detailed, well-controlled
n the neuropsychopharmacology of serotonergic hallucinogens.

clinical trials comparing multiple compounds over a wide range
of doses will answer these questions. Nevertheless, it seems to be
fairly well established that there are marked qualitative differences
between the effects produced by serotonergic hallucinogens and by
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embers of other drug classes. Although it was recently reported
hat subjects administered high doses of the NMDA antagonist
extromethorphan under double-blind conditions identified it as a
lassical hallucinogen when they were asked to classify it pharma-
ologically [435], there are major confounds associated with this
tudy. First, Reissig et al. [435] acknowledged that most if not all
f the study participants were expecting to receive psilocybin, and
his may  have influenced their response to dextromethorphan.
econd, the subjects did not receive a hallucinogen as an active con-
rol, so the study did not actually quantify the similarity between
he effects of dextromethorphan and hallucinogens. It is also
urprising that none of the subjects classified dextromethorphan
s a dissociative anesthetic, since dextromethorphan is abused for
ts dissociative-like effects [436] and produces phencyclidine- and
etamine-like discriminative stimulus effects in rats [437,438].

Over the last decade, there has been renewed interest into the
otential therapeutic uses for hallucinogens. Psilocybin can induce
ighly meaningful spiritual experiences [58], and some subjects
ave reported experiencing positive changes in mood and behav-

or that persist for many months [62]. It may  be possible to exploit
hese effects therapeutically. Recent clinical trials have investigated
hether psilocybin has efficacy against anxiety in terminal can-

er patients [56], and LSD has been tested as a potential adjunct
or psychotherapy [439]. Several follow-up studies are currently in
rogress. It is anticipated that these and other studies will yield

mportant insights into the psychopharmacology of hallucinogens,
s well as showing whether there are potential medical uses for
hese drugs.
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