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Abstract

Objective: In this review we attempt to characterize the acute and chronic role of 5-HT2B receptors with regard to

meningeal nociception in animal experiments and clinical data targeting migraine therapy.

Background: Migraine is a common disabling neurovascular primary headache disease, the pathomechanism of which is

still unclear. Serotonin (5-HT) and its receptors might play an important role in some aspects of migraine pathogenesis.

The ability of the unselective 5-HT2B receptor agonist m-chlorophenylpiperazine to induce migraine attacks in migraine

sufferers, the high affinity of prophylactic antimigraine drugs to this receptor and its expression in migraine-relevant

structures like the dura mater argue for a role of 5-HT2B receptors in the pathogenesis of migraine attacks.

Methods: For this review, the relevant databases such as PubMed, MEDLINE�, Cochrane Library and EMBASE, respect-

ively, were searched to December 2015 using the keywords ‘‘migraine, 5-HT2, trigeminal, neurogenic inflammation, nitric

oxide, nitroxyl, vasodilatation, plasma protein extravasation’’ and combinations thereof.

Conclusion: Our literature review suggests an important role of 5-HT2B receptor activation in meningeal nociception

and the generation of migraine pain.
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Introduction

Serotonin (5-HT) and its receptors play an important
role in migraine research. The concentration of the
5-HT metabolite, 5-hydroxyindole acetic acid
(5-HIAA), has been found increased in urinary excre-
tion during migraine attacks and could thus serve as a
biomarker of migraine (1). 5-HT is released from plate-
lets by compounds such as fenfluramine, while reser-
pine or 5-HT reuptake inhibitors (zimeldine and
femoxetine) may increase the frequency of migraine
attacks (2,3). During migraine attacks the 5-HT con-
centration is decreased in platelets and subsequently
increased in the blood plasma (4–6). Brewerton et al.
reported that administration of m-chlorphenylpipera-
zine (mCPP), a metabolite of the antidepressant
tradozone and nefazodone, with different affinities to
5-HT2B/2C receptors and other serotonin, adrenergic,
dopamine and muscarine cholinergic receptors, leads
to delayed ‘‘typical migraine headache’’ in migraineurs
and unspecific headaches in healthy individuals (7).
Experimental data show that particularly 5-HT2B

receptors play a role in functions that may be

associated with the pathophysiology of headaches.
Acute activation of 5-HT2B receptors by mCPP led to
nitric oxide (NO)-dependent plasma protein extravasa-
tion (PPE) in the dura mater of guinea pigs (8,9) and
activation of neurons in the trigeminal nucleus caudalis
(TNC) of rats (10). Therefore it has been assumed that
meningeal 5-HT2B receptors are involved in early steps
of migraine pathogenesis (11). Clinical evidence for a
role of 5-HT2-receptors in migraine is provided by the
fact that various prophylactic agents (methysergide or
pizotifen) are 5-HT2 receptors antagonists.
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Structure and localization

of 5-HT2B receptors

The 5-HT2B receptor was first described by Vane in the
rat gastric fundus, where it is responsible for the con-
traction of the longitudinal muscle cell layer (12).
In 1992, 5-HT2B receptors were first cloned from rats
and mice (13,14) followed by cloning of the human
5-HT2B receptor (15,16). The receptor protein consists
of 481 amino acids (16) and has a 45% homology with
5-HT2A and a 42% homology with the 5-HT2C receptor
protein (17). The occurrence of the 5-HT2B receptor is
ubiquitous. It occurs with a particularly high rate in
liver and kidney, while a low expression rate was
detected in pancreas and spleen (18). Likewise it is
expressed in lung arterial endothelial cells, where it is
responsible for the development of pulmonary hyper-
tension (19). In the rat brain 5-HT2B receptors are
slightly expressed in neurons located in the cerebellum,
the posterior hypothalamus, the lateral septum and the
medial amygdala but these data, which are derived
from immunohistochemical staining (IHS) (20), are con-
sidered controversial. Other studies using IHS and
molecular biological methods showed expression in
motoneurons (21), in rat spinal cord and in dorsal root
ganglion (DRG) (22–24). The subcellular localization of
the receptor in blood vessels is not evident from the lit-
erature; however, it has been suggested that it is localized
on the luminal side of vascular endothelial cells (11).

An important function in the context of the 5-HT2B

receptor is the activation of nitric monoxide synthase
(NOS), which promotes cleavage of the guanidino
group from the amino acid arginine and other inter-
mediate steps of NO synthesis (25). According to
experiments in cell cultures, NOS seems to be coupled
to the 5-HT2B receptor through a PDZ-domain of the
c-terminus (26). The link between the receptor and
NOS in vivo is still unclear, and direct measurements
in vivo are difficult because of the low number of
5-HT2B-positive cells (27).

Location of the receptor in structures
relevant for migraine

Schmuck et al. succeeded in preparing RNA transcripts
from migraine-relevant structures such as the dura
mater (11). The receptor in the dura mater could be
detected in endothelial cells and it was also found
weakly expressed in smooth muscle cells. Lin et al.
detected messenger RNA (mRNA) of the 5-HT2B

receptor by in situ hybridization in trigeminal ganglion
(TG) neurons of mice. A specific function of the recep-
tor in the TG is not yet known but it can be assumed to
be transported along peripheral and central processes
of trigeminal afferents (23).

The acute activation of
5-HT2B receptors leads
to neurogenic inflammation

Components of meningeal neurogenic inflammation,
particularly vasodilatation and plasma protein extrava-
sation (PPE) induced by the release of neuropeptides
from primary sensory nerve terminals, have frequently
been observed in animal experiments as parameters of
meningeal nociception (28). Although these changes are
not directly responsible for the headaches, they may
reflect peripheral pathophysiological events associated
with migraine pain. In a study on guinea pigs, acute
intravenous administration of 1 mg/kg mCPP induced
PPE in dura mater (determined with intravenous
Evans blue application), which could be inhibited
by selective 5-HT2B receptor antagonists (LY53857,
LY215840; both 10 mg/kg), whereas selective inhibition
of the 5-HT2C-receptor (using the antagonist
LY310898) had no influence on the PPE (9). It should
be mentioned that, in addition to different 5-HT recep-
tors, mCPP interacts also with other neurotransmitter
receptors such as adrenergic, dopamine and muscarine
cholinergic receptors (for overview see Hamik and
Peroutka (29) and Martin and Martin (10)).

Schmitz et al. showed similar results with the same
preparation using a new substance (BF-1) for blocking
PPE. BF-1 has very high affinity for the 5-HT2B

receptor (pki¼ 8.63� 0.24, SD) with only minor affin-
ity to the 5-HT2C receptor (pki¼ 7.64) and the hista-
mine 1 (H1) receptor (pki¼ 7.81). According to the
authors these low affinities for the 5-HT2C receptor
and the H1 receptor preclude unspecific effects, which
appeared to be more prominent with older substances,
e.g. pimethixene (1-methyl-4-(9H-thioxanthen-9-ylidene)
piperidine (pki¼ 10.14 for H1 receptors and 8.42 for 5-
HT2C receptors) (8). The inhibition of 5-HT2B receptors
with the compound RS-127445, a selective, high-affinity
(pki¼ 9.5), orally bioavailable 5-HT2B receptor antag-
onist (30), was shown to inhibit the mCPP-induced PPE
as well as c-fos expression in the rat trigeminal nucleus
caudalis (TNC) evoked by capsaicin (31). Schmuck
et al. has also shown that the activation of 5-HT2B

receptors by the unspecific agonist dihydroergotamine
(DHE) (10–9 to 10–6mol/l) causes vasodilatation of iso-
lated cerebral arteries in the pig. The DHE-induced
relaxation could be blocked by pizotifen (10–6mol/l),
a prophylactic antimigraine drug (11). As a limitation
for this association it should be mentioned that pizoti-
fen also has an antihistamine (H1-receptor blocking)
and weak anticholinergic action, which could be
involved in the prophylactic effect (32–34). However,
taking together the above results, it seems most likely
that it is the 5-HT2B receptor that is involved in
formation of the major components of neurogenic
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inflammation, vasodilatation and PPE evoked by mCPP.
The neurogenic inflammation is induced by the release of
substance P, which is mainly responsible for the PPE,
and calcitonin gene-related peptide (CGRP), which
mediates vasodilatation. Substance P binds to the neu-
rokinin receptor 1 (NK-1), which is localized on endo-
thelial cells, and thereby induces the formation of gaps in
the endothelium (ca. 0.5–1.5mm) allowing plasma pro-
teins to diffuse into the perivascular tissue, e.g. demon-
strated in the rat trachea (35). PPE has been studied
extensively in different tissues including the dura mater
(36). In an electron microscopic study of dural blood
vessels, Dimitriadou found that the electrical-induced
PPE is not caused by an increased number of endothelial
gaps but rather by an increased number of pinocytotic
vesicles (37). Hunfeld et al. observed an mCPP-induced
PPE that was associated with increased transcellular
transport of dissolved substances (e.g. horseradish per-
oxidase, HRP) in endothelial cells with no damage of
fenestrae or tight junction integrity in mice dura mater
(38). Other studies showed both transcellular and para-
cellular transport through the endothelial junction and
clefts (39). However, the precise mechanism of PPE in
the dura mater and whether it is important for the emer-
gence of migraine remains questionable, because block-
ade of the PPE via NK-1 receptor antagonists turned out
to be ineffective in migraine treatment (40,41).

The extent of vasodilatation is routinely measured
by parameters such as an increased vessel diameter or
increased blood flow (42,43). Furthermore, substance P
and CGRP released from meningeal afferents may be
involved in the activation and degranulation of dural
mast cells, which may express receptors for both neuro-
peptides (44). Through the release of pro-inflammatory
substances such as histamine and cytokines from mast
cells, the neurogenic inflammation of the dura mater
may be aggravated (45).

Massive mast cell degranulation (by compound
48/80) has been shown to activate primary meningeal
afferents and second-order neurons in the TNC (46).
However, it is questionable if the neuropeptides as
weak mast cell activators can induce such an effect,
and it is unclear which substances released from mast
cells are capable of activating primary afferents. One
candidate, histamine, activated only a very small pro-
portion of meningeal afferents in an in vitro study (47).
In experimental and clinical studies administration of
histamine caused dilatation of cerebral arteries and
induced typical migraine headache, which could be
inhibited by blockade of H1 receptors (48,49).
However, inhibition of H1 receptors blocked only the
‘‘histamine-induced headache’’ but was ineffective in
prophylactic migraine treatment (4,50). This may sup-
port the view that 5-HT, which is another substance
concentrated in mast cell granules, may be more

important as a ‘‘natural player’’ in the generation of
migraine attacks (11).

In summary, the observations that 5-HT2B receptor
agonists like mCPP induce plasma extravasation as the
main element of neurogenic inflammation in the dura
mater and increase c-fos expression in the TNC argue
for a role of 5-HT2B receptors in events associated with
the generation of trigeminal activity and possibly
migraine pain (9,10).

5-HT2B receptor-induced neurogenic
inflammation depends on NO synthesis

Kalkman postulated in 1994 that activation of ‘‘5-HT2C-
like’’ receptors can provoke migraine attacks because the
activation of these receptors leads to NO release, which
may be a key event in triggering migraine (2). Fozard
already postulated this hypothesis as early as 1975 but
was not sure which of the 5-HT receptors can induce
the release of NO. It should be noted also that the acti-
vation of other receptors, e.g. H1 receptors, leads to NO
release (51). Recent studies focused on elucidating the role
of NO and its specific actions. The peripheral activation
of 5-HT2B receptor leads to formation of NO (11). In a
study with acute 5-HT2B receptor activation, administra-
tion of the NO synthase inhibitor L-NAME caused inhib-
ition of dural PPE in the guinea pig (9). NO is known to
activate the soluble guanylate cyclase (sGC) in smooth
vascular muscle cells resulting in an increase in cyclic
guanosyl monophosphate (cGMP) (52). By this way
NO causes relaxation of smooth muscle resulting in vaso-
dilatation of arterial blood vessels and increased blood
flow (53). Recent experiments indicate alternative, pos-
sibly even more potent, vasodilatory mechanisms. In the
presence of hydrogen sulfide (H2S), a product of the con-
densation of cysteine with homocysteine to cystathionine,
catalyzed by enzymes like cystathionine b-synthase (CBS)
(54), NO can be metabolized to nitroxyl (HNO). HNO is
a potent agonist of TRPA1 receptor channels, which
upon their opening induce an influx of Ca2þ (55,56).
In TRPA1 expressing peptidergic sensory neurons, this
mechanism is mainly responsible for the release of neuro-
peptides like CGRP (56). CGRP is regarded as the most
potent vasodilator of intracranial arteries (57), hence this
mechanism caused strong vasodilatation and blood flow
increase in the rat cranial dura mater (58).

In the TG, NOmay be involved in a neuron-glia cross-
talk. In TG cell cultures, NO donors caused CGRP pro-
moter activity and secretion (59). Conversely, CGRP
treatment increased glial iNOS expression and NO release
from TG satellite cells (60). This could lead to a vicious
circle if CGRP-releasing neurons are surrounded by
NO-producing satellite cells; however, it is yet uncertain
if this crosstalk takes place in the intact TG in vivo.
Communication between CGRP-releasing and NO-
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producing neurons in the TG also seems possible.
Glycerol trinitrate (nitroglycerin, GTN), a substance dir-
ectly activating the sGC (61), which is long known to
induce vascular headaches such as delayed migraine
attacks in migraineurs (62), caused upregulation of
CGRP, CGRP receptor components and neuronal NO
synthase (nNOS) in rat TG neurons (63,64).

Similar signaling mechanisms may take place in
the superficial laminae of the TNC, where the central
terminals of nociceptive trigeminal afferents synapse
onto second-order neurons. CGRP released from such
terminals acts as a neuromodulator facilitating synaptic
transmission (65). Multiple neurons in all spinal layers
seem to express nNOS (66) and potentially produce NO
as a ‘‘retrograde transmitter’’ that facilitates neuro-
transmitter release from presynaptic terminals (67).

Taken together, several lines of evidence are suggest-
ive of 5-HT2B receptor-dependent NO production,
which may be involved in the pathogenesis of nocicep-
tive processes of migraine pain. These changes are likely
based on gene expression of components like nNOS
and CGRP receptor proteins and may therefore be
very slow. Hence a therapeutic approach making use
of these mechanisms can be expected to be successful
rather in a prophylactic manner than in an acute inter-
vention. To test hypotheses of such long-term drug
actions beyond cell cultures, there is a need for new
models that represent the complexity of expression
changes in the TG and the respective effects in periph-
eral and central trigeminovascular tissues.

The chronic inhibition of 5-HT2B receptors
may be prophylactic in migraine

Antagonists of the 5-HT2B receptor, methysergide,
eyproheptadine and pizotifen, are effective in the prophy-
lactic treatment of migraine (34,68), whereas ketanserin,
which lacks affinity for 5-HT2B or 5-HT2C receptors, has
no such prophylactic effect. The above substances act not
only on 5-HT2B but also on 5-HT2C receptors, leaving the
question open which of the receptor subtypes is respon-
sible for the prophylactic effect.

Prophylactic migraine drugs, e.g. methysergide, can sig-
nificantly reduce migraine frequency but this compound
must be taken for a longer period (three to four weeks)

to achieve a therapeutic effect (69). Accordingly, in an
animal model in rats, Saito et al. found that chronic but
not acute treatment with methysergide inhibited PPE in
the dura mater (70). The authors speculated that the
difference between acute and chronic administration is
the accumulation of the active metabolite, methylergo-
tamine, as the actually effective drug.

Schaerlinger et al. found in an in vitro system
(transfected human 5-HT2B/2C in LMTK– cells) that
the long-term use of dihydroergotamine (DHE) leads
to desensitization of 5-HT2B receptors but not 5-HT2C

receptors (71). In transfected Chinese Hamster Ovary
(CHO)-K1 cells, among all 5-HT2 receptor subtypes,
the 5-HT2B receptors underwent the highest degree
of desensitization to chronic 5-HT exposure (72).
Moskowitz postulated in 1992 that methysergide and
its metabolite methylergotamine inhibit the release
of CGRP from perivascular sensory nerves (73).
Though vasodilatation is no longer regarded as the key
mechanism in migraine pain generation, limiting CGRP
release, as it is achieved by 5-HT1B/D agonists (triptans),
is closely associated with an antimigraine effect. In a
recent study for the first time mice could be made sensi-
tive to 5-HT2B receptor agonists by chronic hypoxia, a
model that may demonstrate the potential importance of
this receptor in chronic migraine processes. The authors
postulated that four weeks’ hypoxia induced a shift from
a ‘‘non-migraineur’’ to a ‘‘migraineur-like’’ state, which
was shown to depend on chronic activation of 5-HT2B

receptors. The mechanism for this shift could not be
explained by an increased expression of 5-HT2B recep-
tors or other proteins involved. Learning more about the
underlying cellular mechanisms of this phenomenon is
demanding and could explain why the exclusively chronic
treatment with 5-HT2B receptor antagonists leads to a
reduction of migraine attacks (38).

In conclusion, in search of a preventive antimigraine
drug based on 5-HT2 receptor inhibition, it is desirable
to find a highly selective 5-HT2B receptor antagonist that
readily binds to the receptor and does not depend on an
effective metabolite generated in the body. Second, such
a receptor antagonist should have no or minimal activity
at the 5-HT2C receptor to reduce central side effects, e.g.
psychedelic and hallucinogenic actions (74). Clinical stu-
dies are awaited to prove this concept.

Article highlights

. 5-HT2B receptors are expressed at a low rate in a variety of tissues including blood vessels of the cranial dura
and in the trigeminal ganglion.

. Activation of 5-HT2B receptors causing neurogenic inflammation via nitric oxide synthesis indicates their
possible involvement in migraine pathophysiology.

. Inhibition of 5-HT2B receptors may contribute to a prophylactic effect in migraine.
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