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RThere has been significant recent progress in understanding the neurobiological mechanisms of antidepressant
treatments. The delayed-onset of action of monoamine-based antidepressant drugs have been linked to their
ability to slowly increase synaptic plasticity andneuronal excitability via altering neurotrophic signaling (synthesis
of BDNF and activation of its receptor TrkB), dematuration of GABAergic interneurons and inhibition of “breaks
of plasticity”. On the other hand, antidepressants rapidly regulate emotional processing that – with the help of
heightened plasticity and appropriate rehabilitation – gradually lead to significant changes on functional neuronal
connectivity and clinical recovery. Moreover, the discovery of rapid-acting antidepressants, most notably
ketamine, has inspired renewed interest for novel antidepressant developments with better efficacy and faster
onset of action. Therapeutic effects of rapid-acting antidepressants have been linked with their ability to rapidly
regulate neuronal excitability and thereby increase synaptic translation and release of BDNF, activation of the
TrkB–mTOR–p70S6k signaling pathway and increased synaptogenesis within the prefrontal cortex. Thus, alter-
ations in TrkB signaling, synaptic plasticity and neuronal excitability are shared neurobiological phenomena
implicated in antidepressant responses produced by both gradually and rapid acting antidepressants. However,
regardless of antidepressant, their therapeutic effects are not permanent which suggests that their effects on
neuronal connectivity and network function remain unstable and vulnerable for psychosocial challenges.

© 2015 Published by Elsevier Inc.
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R1. Introduction

Major depression is a highly disabling psychiatric disorder and
among the biggest contributors to the disease burden worldwide
(Kessler et al., 2003; Olesen et al., 2012). Due to multifactorial nature
and heterogeneous symptomatology the precise etiology of this debili-
tating disorder remains poorly understood. However, among precipitat-
ing factors chronic stress and psychosocial trauma are prevalent
determinants (Liu and Alloy, 2010). In particular, early-life adverse
events increase the vulnerability to stress and facilitate the develop-
ment of major depression later in life (Heim and Nemeroff, 2001). Yet,
not all individuals react to stress similarly; for example genetic vulner-
ability, epigenetic factors, personal trait, previous experiences and
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personal development, and environmental factors play a role in the
susceptibility to depressive illness.

Several brain structures and neurocircuits are affected in major
depression. In particular, depressive states are associated with altered
activity and neuronal connectivity (e.g. due to spine loss, neuronal
atrophy) within and between prefrontal and limbic structures, which
are thought to contribute to cognitive and emotional deficits (anhedo-
nia, negative affect), attention biases and impaired decision-making
(Arnsten, 2009; Koenigs and Grafman, 2009; Price and Drevets, 2012).
Reduced neurotrophin support, particularly deficient BDNF (brain-
derived neurotrophic factor) synthesis and signaling of its receptor
TrkB, is linked with the atrophic alterations associated with stress and
depression (Castrén et al., 2007; Duman and Aghajanian, 2012;
Duman et al., 1997). Neurobiological basis of altered activity of brain
neurocircuits remain less understood, but abnormal function and/or
expression of ion channels that regulate intrinsic neuronal excitability
have been suggested to play a role (Arnsten, 2009).

The standard treatment for major depression is pharmacotherapy.
However, commonly used antidepressants, such as selective serotonin
(5-HT) reuptake inhibitor (SSRI) fluoxetine, have a delayed onset of
action and significant number of patients responds inadequately or
not at all to thesemedications (Fava, 2003). These drugs acutely elevate
extrasynaptic monoamine levels but weeks of treatment are required
— From rapid changes on network function to network rewiring, Prog
/j.pnpbp.2015.06.001
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before the core symptoms of depression (anhedonia, depressed mood)
will be ameliorated. This discrepancy between antidepressant-induced
acute neurochemical effects and clinical efficacy has puzzled the re-
searchers for several decades and steered the development of neuroa-
daptative theories. On the other hand, emerging evidence support
a hypothesis that antidepressants rapidly initiate functional alterations
within brain neurocircuits, which gradually lead to a more significant
and sustained therapeutic effect (see below) (Fig. 1). Besides depres-
sion, these monoamine-based drugs show therapeutic efficacy against
several other nervous system disorders, such as neuropathic pain,
anxiety and eating disorders. This wide indication spectrum adds
another unsolved characteristic associated with the use of antide-
pressants. Importantly, regardless of indication the therapeutic effects
of these drugs are observed with a significant delay.

After launching the electroconvulsive therapy (ECT; in 1930)
and serendipitous discovery of monoamine-based antidepressants (in
1950), there has been considerable delay in finding truly novel antide-
pressant treatments. Indeed, essentially all antidepressant drugs recently
entered into the clinical markets are based on the basic pharmacological
principle (monoamine theory) of the first antidepressant drugs (e.g.
5-HT and noradrenaline (NA) reuptake inhibitor (SNRI) duloxetine).
Importantly however, NMDA (N-methyl-D-aspartate) receptor blocker
ketamine has received strong attention during the past 10 years as a
novel rapid-acting antidepressant (Duman and Aghajanian, 2012).
Although, some of the pharmacological actions strongly limit the thera-
peutic use of ketamine, understanding of the mechanisms governing
its antidepressant actions is essential for novel rapid-acting and more
effective antidepressant developments.

In this review we will present some of the early groundbreaking
findings and more recent scientific discoveries that provide important
insights into the neurobiological actions of classical antidepressants
and rapid-acting antidepressants, particularly ketamine.

2. From neurotrophin hypothesis

The pioneering work by Dr. Ronald Duman and colleagues showing
that monoamine based antidepressants and electroconvulsive shock
(ECS; model of ECT) gradually, but not acutely, increase BDNF synthesis
in the hippocampus and cortex (Nibuya et al., 1995) turned the atten-
tion to slowly developing plastic changes as important mediators of
antidepressant action (Duman et al., 1997). Antidepressant-induced
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Fig. 1. Two models depicting delayed-onset action of antidepressants. In scientific
literature (—) the effects of antidepressants are often described as “on–off” phenomenon
where the acute pharmacological effects (?) of antidepressants is followed by a period
of “silence” before the adaptive alterations leading to therapeutic effects become evident.
Clinical situation (___) is more dynamic: antidepressants gradually improve depression
symptomatology, albeit weeks of treatment are required before the core symptoms of
depression, anhedonia and depressed mood are ameliorated. Changes occurring between
(?) the onset of treatment and significant effects of mood are equally important or even
essential for recovery. Red arrow= antidepressant treatment.
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BDNF synthesis was further linked with the facilitated monoaminergic
neurotransmission, in particular with cyclic AMP signaling and subse-
quent activation of transcription factor CREB (cAMP related element
binding protein) (Blendy, 2006; Chen et al., 2001; Duman et al., 1997;
Nibuya et al., 1996). Interestingly, the ability of antidepressants to facil-
itate BDNF synthesis through CREB is not directly linked with their
ability to increase the signaling of TrkB, the primary receptor of BDNF.
Indeed, antidepressants activate TrkB signaling already within an hour
of a single treatment (Rantamäki et al., 2006, 2007; Saarelainen et al.,
2003) and this effect appear to be independent of both monoamines
and BDNF (Rantamäki et al., 2011). All in all, the precise molecular
mechanism underlying antidepressant-induced rapid TrkB activation
remains obscure (Di Lieto et al., 2012; Rantamäki et al., 2011) and
awaits further investigations. Equally important, the specific cellular
population(s) showing most prominent changes in TrkB signaling
after antidepressant administration remains unidentified. Yet, these
findings importantly show that the induction of plastic signaling
is very rapid and does not coincide with the therapeutic delay of
monoamine-based antidepressants (Fig. 2). Notably, since TrkB signal-
ing positively regulates Bdnf gene expression (Saarelainen et al.,
2001), BDNF-independent rapid TrkB transactivation may lead to
increased BDNF synthesis, which subsequently activate its cognate
receptor during prolonged treatment (Rantamäki et al., 2007) (Fig. 3).
However, in contrast with BDNF-induced TrkB phosphorylation and
activation, both acute and chronic antidepressant treatment produce
intriguing site-specific phosphorylation changes on TrkB (Di Lieto
et al., 2012; Rantamäki et al., 2007, 2011; Saarelainen et al., 2003),
favoring predominant transactivation mechanism regardless of the
duration of antidepressant administration.

Subsequent studies showed that prolonged, but not acute, anti-
depressant drug treatment enhances (or reverses stress-induced abnor-
malities therein) several cellular and functional level changes associated
with neuronal plasticity such as hippocampal neurogenesis (Malberg
et al., 2000), synaptogenesis (Hajszan et al., 2005, 2009), changes
in synaptic efficacy/strength (long-term potentiation, LTP) and neuro-
nal excitability (Chen et al., 2011; Rocher et al., 2004) (Fig. 2). Most
importantly, enhanced BDNF–TrkB signaling appears necessary for
antidepressant-like actions in rodents (Deltheil et al., 2008; Monteggia
et al., 2007; Saarelainen et al., 2003). Since increased BDNF–TrkB signal-
ing has been also suggested to be sufficient for antidepressant actions
(Koponen et al., 2005; Saarelainen et al., 2003; Shirayama et al., 2002;
Siuciak et al., 1997), there has been considerable recent interest in find-
ing novel antidepressant-like drugs targeting the TrkB receptor (Liu
et al., 2010; Obianyo and Ye, 2013). However, it is important to note
that the behavioral outcome of increased BDNF signaling critically de-
pends on specific brain area and neurocircuit. For example, mesolimbic
BDNF signaling is importantly regulating (mal)adaptive behavioral
responses to chronic social defeat stress and addictive substances
(Berton et al., 2006; Hall et al., 2003; Lu et al., 2004; Wang et al.,
2013).Moreover, BDNF signaling regulates homeostatic functionswith-
in the hypothalamus (Takei et al., 2014) and synaptic connectivity (Park
and Poo, 2013) of several other brain neurocircuits as well, especially
during development. Thus, BDNF–TrkB signaling importantly regulates
synaptic plasticity and connectivity in many, if not most, neuronal
networks but the network function itself and plasticity within the
network determines the ultimate outcome. Therefore, direct activation
of essentially all TrkB receptors (i.e. using TrkB specific agonists) within
the brain may not be therapeutically rational (Zhang et al., 2014). Nota-
bly however, although currently used monoamine-based antidepres-
sants do not act as direct TrkB agonists, they do activate TrkB in
various brain areas (Rantamäki et al., 2011).

3. To network hypothesis

Researchers have recently started to investigate the ultimate func-
tional consequence of antidepressant-induced synaptic plasticity.
— From rapid changes on network function to network rewiring, Prog
/j.pnpbp.2015.06.001
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Fig. 2. “Roadmap” of depression, recovery and relapse at the level of prefrontal cortex. I) Vulnerability. Several genetic, epigenetic, environmental and developmental factors make
individual susceptible for depression later in life. II) Disease manifestation. Strong psychosocial stress often precipitate depression episode through altering neurotrophic signaling and
producing aberrant changes in neuronal connectivity (e.g. loss of unstable spines, marked with red color) and in network function (abnormal emotional processing) within the prefrontal
circuits. III) Initiation. Antidepressants facilitate monoaminergic signaling (spines glow in yellow) and thereby regulate rapid changes in emotional processing. Notably, antidepressants
begin to activate plastic neurotrophic signaling already at this stage. IV) Tools for recovery. Antidepressant treatment gradually increases synaptic plasticity by increasing BDNF synthesis,
synaptogenesis (newly formed, but still unstable, spines marked with red color), facilitating synaptic strength and excitability and by removing “brakes of plasticity”. V) Recovery and
reconsolidation. Induced plasticity allows rewiring of neuronal connections. The rewiring and selection of appropriate synaptic connections is guided by the network itself (e.g. emotional
processing) and/or external cues (e.g. rehabilitation). Note that the relative efficacy of antidepressant drug (______Q3Q4 ) compared to placebo (———) increase by time. VI) Remission.
Monoamine depletion (5-HT↓; __ – __Q5 ) and drug discontinuation lead to rapid and gradual re-emergence of depressive symptoms, respectively. Schematic presentation of proposed
alterations in prefrontal (PFC) connectively during different stages are depicted above. Red arrow= antidepressant treatment.

Fig. 3. Neurobiological mechanisms and effects of rapid acting antidepressant ketamine. A single ketamine treatment induces rapid changes in cortical excitability through inhibition of
GABAergic interneurons and activation of AMPA receptor signaling. Increased AMPA receptor signaling increases synaptic translation and release of neurotrophin BDNF, which further
induces TrkB–mTOR–p70S6k signaling pathway, facilitation of synaptic plasticity, increase in synaptic proteins (PSD95, GluR1) and synaptogenesis. Notably, classical antidepressants
produce also acutely increases TrkB receptor signaling. Depressive symptoms re-emerge within days after ketamine treatment. Red arrow= ketamine.
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Neuronal wiring and selection of synaptic connections is an active pro-
cess that is determined by the network function itself and environmen-
tal stimuli (Hensch, 2005). This process is best understood in early life
heightened plasticity stages (i.e. sensitive periods) when the neuronal
networks are initially formed (“programmed”) by the guidance of envi-
ronmental cues (Hensch, 2005). Importantly, adverse conditions early
in life may thus produce long-lasting sustainable alterations within
the network thatmake the individual susceptible to specific brain disor-
ders later in life (Castrén et al., 2012) (Fig. 2). Formation of perineuronal
nets (PNN) and emergence of other “breaks of plasticity” and matura-
tion of GABAergic inhibition are important neurobiological mechanisms
underlying the closure of these sensitive periods (Hensch, 2005).

Recent evidence suggests that chronic antidepressant treatment pro-
duce “dematuration” of GABAergic interneurons, removal of the “breaks
of plasticity” and reduced inhibition within certain brain neurocircuits
(Chen et al., 2011; Karpova et al., 2011; Kobayashi et al., 2010; Maya
Vetencourt et al., 2008; Ohira et al., 2013). Most importantly, this
reopening of juvenile-type of plasticity strongly facilitates the re-
organization of synaptic connections guided by the environmental
stimuli or functional therapy (Fig. 2). Specifically, combination of fluox-
etine with active rehabilitation – but neither alone – completely re-
covers developmental amblyopia (so called lazy eye; i.e. vision of one
eye strongly and persistently reduced due to improper visual input
during the sensitive period) in adult rats (Maya Vetencourt et al.,
2008). These findings are pretty remarkable since the condition has
been considered incurable after the termination of sensitive period in
the visual cortex. In order to test the similar concept – reinstatement
of juvenile-type of plasticity – can be recapitulated in mood-related
neuronal networks, the researchers investigated the impact of the
antidepressant treatment on plasticity within the fear circuits of amyg-
dala. Pathophysiological fear learning against safe situations and fear
generalization (e.g. post-traumatic stress disorder, PTSD) can be over-
come by active desensitization process during juvenile period but not
effectively in adulthood. Importantly, combination of extinction training
(a model of exposure therapy) with fluoxetine, but neither alone,
induced a sustained loss of conditioned fear memory in adult mice
(Karpova et al., 2011). These exciting findings are in line with the
network hypothesis of antidepressant action (Castrén, 2005): anti-
depressants are not therapeutical per se but theymerely produce a plastic
state – heightened adaptability – in the brain that significantly facilitates
the impact of rehabilitation (Castrén and Hen, 2013; Castrén and
Rantamäki, 2010).

Although the network theory of antidepressant action is still in its
infancy and needs further experimental and especially clinical investi-
gations, it already helps to understandmany of the intriguing character-
istics associated with the use of classical antidepressants. The formation
of plastic state and rewiring of neuronal connections inevitably takes
time (delayed onset of action) and lack of rehabilitation may under-
lie the inefficacy associated with the use of medication (treatment-
resistance/lack of efficacy). Moreover, drug-induced plasticity appears
to be not restricted in mood-related neurocircuits but rather act
in many levels (therapeutic effects against several nervous system
disorders).

The true therapeutic potential of drug-induced plasticity and combi-
nation of functional rehabilitation in nervous system disorders remains
to be investigated. It is important to note however that combination
of fluoxetine with rehabilitation promotes recovery in ischemic stroke
patients devoid of psychiatric illness such as depression (Chollet et al.,
2011). On the other hand, if the appropriate environment is critical for
recovery, what happens in inappropriate environmental conditions?
Interestingly enough, monocular deprivation (“inappropriate environ-
ment”) in adult animals chronically treated with fluoxetine produced
the shift in ocular dominance in favor of the open eye and poor vision
of the visually deprived eye (amblyopia) (Maya Vetencourt et al.,
2008). All in all, the neurobiological mechanisms of antidepressants ap-
pear to be muchmore complex than originally thought and the specific
Please cite this article as: Rantamäki T, Yalcin I, Antidepressant drug action
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context of which they are used seem to have significant role in deter-
mining the ultimate functional outcome. It should be thus much more
closely examined the outcomes of antidepressant use in different clini-
cal contexts (e.g. correlation of clinical efficacy with patient diaries,
adverse environment).

On the other hand, the therapeutic effects of antidepressants are not
permanent and re-emergence of symptoms after the discontinuation
of effective antidepressant treatment is frequently observed. Conse-
quently, months of “steady-state” antidepressant treatments are com-
monly used — and they appear effective (Shelton, 2004). Moreover,
5-HT depletion rapidly produces relapse in depressive patients under
effective SSRI medication (Delgado et al., 1990). Therefore, antidepres-
sant treatments do not target the core of depression pathology but
rather produce beneficial functional and morphological alterations in
brain neurocircuits that remain vulnerable and are readily subjected
to remodifications (Fig. 2). Since sustained drug treatment is effective,
does the network become more depended on serotonergic transmis-
sion? It will be very important to investigate the stability of neuronal
connections rewired during antidepressant treatment in adulthood.

4. Rapid alterations in network function — emotional processing

Although antidepressants alleviate depressed mood slowly, they
certainly do something during the very early stages of treatment. The
lag-time associated with antidepressants is often misinterpreted as an
on–off phenomenon, i.e. clinical effects of the drugs appear only after
several weeks of treatment (Fig. 1). It is important to note however,
that the relative efficacy of antidepressant drug compared to placebo
increase by time and slight reduction of symptoms is observed already
during the first week of treatment (Taylor et al., 2006). Thus, antide-
pressants gradually reduce symptoms and only after certain threshold
the clinical effect become more obvious. More intriguingly, accumulat-
ing clinical data indicates that antidepressant drugs rapidly regulate in-
formation processing in neurocircuits implicated in depression (Harmer
et al., 2009). Depressive patients have biased emotional processing
towards negative emotions (Beck, 2008; Bouhuys et al., 1999; Bradley
and Mathews, 1983; Gur et al., 1992), and this functional abnormality
is thought to underlie andmaintain depressive states. In healthy controls,
acute antidepressant treatment shift emotional processing towards the
positive domain (Browning et al., 2007; Harmer et al., 2003). On the
other hand, fearful face recognition and startle responses are facilitated
by acute, but attenuated by subchronic, treatment of antidepressants,
although amygdala show sustained reduced responses to fearful and
aversive stimuli (Browning et al., 2007; Harmer et al., 2003, 2004,
2006; Rawlings et al., 2010; Windischberger et al., 2010). Chronic anti-
depressant treatment also increases social problem solving behavior
and reduces submissive behavior, which is observed in depressed people
(Knutson et al., 1998; Raleigh et al., 1991; Tse and Bond, 2002). In
summary, the early effects of antidepressants on the processing of posi-
tive emotional stimuli are maintained whereas the effects of threat
processing are reversed by continuous treatment (Harmer and Cowen,
2013). Most importantly, similar observations (shift towards positive
emotional processing, attenuated amygdala responses to threat stimuli)
have been observed in depressed patients (Harmer et al., 2003), although
most studies have focused on prolonged drug administration and thus
the rapidity of the responses awaits further clarifications. Effects of anti-
depressants on emotional processing appear to be regulated by increased
monoaminergic tone (Booij and Van der Does, 2011; Harmer and Cowen,
2013), which directly links the primary pharmacological mechanism of
antidepressants on these responses.

Based on emotional processing theory of antidepressant action, ini-
tial shift in emotional processing leads to gradual positive changes in so-
cial reinforcement andmood (Fig. 2). This psychological reconsolidation
may be further facilitated – or even depend on – by enhanced synaptic
plasticity (see above). Thus, the network theory and emotional process-
ing theory are notmutually exclusive but complementary: both theories
— From rapid changes on network function to network rewiring, Prog
/j.pnpbp.2015.06.001
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link antidepressant action with cognitive or behavioral theories of
depression.

Recent efforts have been put further to investigate the network-level
functional correlates that could help to better explain the emotional and
network theories of antidepressant actions. These brain-imaging studies
have shown that depressed patients show abnormal resting state func-
tional connectivity – measured as temporally linked activity between
neuronal networks – in specific brain circuits within and between
prefrontal and limbic structures (Anand et al., 2005; Greicius et al.,
2007; Lui et al., 2011; Perrin et al., 2012; Sheline et al., 2010; Veer
et al., 2010; Wang et al., 2015). Most notably, increased functional
connectivity between dorsomedial prefrontal cortex (termed dorsal
nexus) and many of its target areas are highly associated with depres-
sive states and are thought to underlie rumination (Sheline et al.,
2010). Importantly, clinically effective antidepressant treatments (anti-
depressant drugs, ECT) normalize this hyperactivity (Perrin et al., 2012;
Wang et al., 2015). Interestingly, and strictly in line with the emotional
processing and network theories of antidepressant action, antidepres-
sants alter functional neuronal connectivity also in healthy volunteers
(McCabe and Mishor, 2011; McCabe et al., 2011; van Wingen et al.,
2013). Further studies are needed to understand the precise neurobio-
logical basis of antidepressant-induced functional neuronal connect-
ivity, how quickly it appears and how stable it is. One caveat is that
such scientific questions can be currently investigated in animals only
under anesthesia, which in its self may alter neuronal connectivity or
modify the responses produced by antidepressants. In clinical practice
however, functional brain imaging techniques are becoming more and
more valuable tools to predict and correlate therapeutic responses in
patients.

5. Towards rapid-acting antidepressant drugs

Since slowly developing functional and morphological changes
likely precededepressive episodes, it is very conceivable that such adap-
tive alterations cannot be recovered quickly. Importantly however,
some treatments show superior rapidity over commonly used antide-
pressants to ameliorate depressive symptoms. Intriguingly, all these
rapid-acting antidepressants, including sleep deprivation (Giedke and
Schwärzler, 2002) and ECT (Payne and Prudic, 2009), strongly and rap-
idly regulate inhibition-excitation balance and neuronal excitability in
the brain. ECT remains as the treatment of choice for drug-refractory
depressive patients and when fast relief of symptoms is needed (e.g.
suicidal ideation). Although currently delivered under general anesthe-
sia, ECT remains stigmatized and its use may lead to side effects such as
cognitive impairment (Payne and Prudic, 2009). Moreover, despite its
long therapeutic use, the precise neurobiological mechanism governing
the antidepressant effects of ECT remain obscure, although BDNF signal-
ing is considered to play important role (Taylor, 2008). Interestingly
enough, the therapeutic effect of ECT is associated with post-seizure
neuronal inhibition (evident as burst suppression in the electroenceph-
alogram (EEG)) (Perera et al., 2004), although to our knowledge no
experimental studies examining rodent models of ECT have specifically
followed along with this phenomenon.

Recent studies demonstrate that ketamine, a dissociative anesthetic,
produces antidepressant actions. Compared to classical antidepressant
drugs, ketamine does not only act on a novel pharmacological target
(theNMDA receptor), its antidepressant effects also appear very rapidly
– within few hours – after a single treatment (Fig. 3). The therapeutic
effect of a single ketamine treatment also sustains for several days —
thus long after the drug has been removed from the brain. Antide-
pressant effects of ketamine have been mostly studied and shown in
treatment-resistant depressive patients, even in patients that do not
respond to ECT (Berman et al., 2000; O'Leary et al., 2015; Zarate et al.,
2006). Ketamine is effective already at subanesthetic doses, however
researchers have recently got interested whether anesthetic doses of
ketaminewould producemore sustained effects (Okamoto et al., 2010).
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Antidepressant-like effects of a single ketamine administration
has also been observed in rodents (Li et al., 2010; Lindholm et al.,
2012). Experimental data suggest that the antidepressant effects of
ketamine are mediated by rapid regulation of inhibition-excitation
balance (increased cortical excitability) (Cornwell et al., 2012; Di
Lazzaro et al., 2003), fast synaptic translation and the release of BDNF
in the prefrontal cortex that further leads to increased signaling of
the TrkB–mTOR–p70S6k pathway, facilitation of synaptic plasticity
and alterations in dendritic spine dynamics (Autry et al., 2011; Li
et al., 2010; Maeng et al., 2008) (Fig. 3). Indeed, the magnitude of
therapeutic response to ketamine varies between patients, a phenome-
non recently associated with the differential alterations in BDNF ho-
meostasis and Bdnf gene polymorphism (Haile et al., 2014; Laje et al.,
2012). The potential role of mTOR pathway in the pathophysiology of
depression has been recently strengthened by observations demon-
strating increased expression and signaling of REDD1, a negative regula-
tor of mTOR, in depressive patients and animals subjected to chronic
stress (Ota et al., 2014). Interestingly, REDD1 expression in the prefron-
tal cortex is also sufficient to produce anxiodepressive phenotype and
dendritic spine loss reminiscent with chronic stress (Ota et al., 2014).
Moreover, the levels of mTOR and its downstream kinase p70S6k are
reduced in the prefrontal cortex of depressive patients (Jernigan et al.,
2011).

The discovery of rapid acting effects of ketamine has strongly in-
creased the interest towards novel faster acting antidepressant develop-
ments (Duman and Aghajanian, 2012; Zarate et al., 2013). Intriguingly,
antimuscarinic agent scopolamine have been also shown to produce
rapid antidepressant effects (Furey and Drevets, 2006) and, similarly
with ketamine, increased glutamatergic transmission, mTOR signaling
and synaptogenesis have been associated with these responses (Voleti
et al., 2013). Moreover, burst-suppressing anesthesia has been shown
to produce antidepressant effects comparable to those of ECT, without
affecting cognitive performance (Langer et al., 1995). More importantly,
antidepressant effects of isoflurane seem to appear already after thefirst
treatment episode (Langer et al., 1995). A recent clinical study supports
the hypothesis that isoflurane possess antidepressant effects (Weeks
et al., 2013), however, this study did not specifically look the rapidity
of these responses. Yet, differential therapeutic responses in patients
(Greenberg et al., 1987; Langer et al., 1995) and unknown neurobio-
logical basis have strongly reduced the interest to further evaluate
anesthesia as a potential (and intriguing) substitute of ECT. Thus, better
understanding of themechanisms underlying antidepressant actions of
isoflurane in experimental animals is needed.

The antidepressant effects of ketamine appear within few hours,
a time window where environmental guided rewiring of synaptic
connections may not yet take place, although ketamine rapidly in-
creases synaptic markers and regulates the formation of functional
excitatory synapses (Li et al., 2010). Whether these new synaptic
contacts bring about physiological changes in neuronal connectivity or
merely produce “noise” that beneficially alters existing network func-
tion remains unknown. Interestingly, hyper- and hypoactivity within
specific prefrontal circuitries have been associated with depression.
Local deep brain stimulation (DBS) and effective antidepressant treat-
ment normalize these alterations (Mayberg et al., 2005). Moreover,
optogenetic and electrical stimulations of the specific prefrontal circuit-
ries can induce either antidepressant-like or depression-like behavioral
responses in rodents (Barthas et al., 2015; Hamani et al., 2010a,b, 2012).
These studies clearly demonstrate that themood-related circuits can be
effectively and rapidly regulated which is directly reflected in behavior.
In linewith these findings, functional connectivity withinmood-related
neuronal circuits are facilitated already during an acute ketamine
administration in rats (Gass et al., 2014), whereas blunting of functional
connectivity – as observed after repeated treatment of classical antide-
pressants – is observed 24 h after the treatment in humans (healthy
volunteers) (Scheidegger et al., 2012), a time window associated with
most significant antidepressant effect of ketamine.
— From rapid changes on network function to network rewiring, Prog
/j.pnpbp.2015.06.001
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Importantly, similarlywith classical antidepressants, the therapeutic
effects of ketamine gradually disappear (Murrough et al., 2013).
New dose will be effective however repeated administration (cf. ECT)
of psychoactive substance with strong abuse potential is warranted. It
remains to be investigated how transient and stable effects ketamine
produces on neuronal connectivity and network function and whether
the circuits could be stabilized through rehabilitation. Notably, pre-
frontal circuitries are particularly vulnerable for environmental chal-
lenges (Izquierdo et al., 2006). Moreover, since monoaminergic
antidepressants and ketamine produce qualitative and quantitatively
different changes on synaptic plasticity, their combined use should be
examined.
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6. Conclusions

There has been important recent progress in understanding the
neurobiological mechanisms of classical antidepressants and rapid-
acting antidepressant ketamine (Figs. 2–3). Monoamine based antide-
pressants rapidly regulate emotional processing and TrkB neurotrophin
signaling. Continued antidepressant treatment further produces height-
ened plasticity that allows rewiring and efficient reconsolidation of
neuronal connections guided by intrinsic and extrinsic cues. These find-
ings help to explain (and substantiate) the superior therapeutic efficacy
of combined use of pharmacotherapy and functional rehabilitation but
also raises critical thinking about the potential impact of such heighted
plasticity in undesired environmental conditions.

Increased neuronal excitability, activation of TrkB–mTOR–p70S6k
signaling and increase in cortical synaptogenesis are implicated in the
antidepressant actions of ketamine. Thus, induced plasticity through
TrkB signaling is implicated in the mechanisms of action of both gradu-
ally acting and rapid-acting antidepressant drugs. However their mech-
anisms and effects on TrkB receptor differ (Autry et al., 2011; Di Lieto
et al., 2012; Rantamäki et al., 2011) which leads to qualitatively, quanti-
tatively and spatially differential, yet largely unknown, downstream
signaling events and functional consequences.

Regardless of antidepressant, their therapeutic effects are not
permanent. Consequently, antidepressant treatments do not target the
core of depression pathology but produce beneficial functional and
morphological alterations in brain neurocircuits that are readily sub-
jected to remodifications. Better understanding of the neurobiological
effects of diverse antidepressant treatments on neuronal connectivity
and function will lead to more effective therapeutic approaches against
major depression and other nervous system disorders that benefit from
induced plasticity.
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